快速排序
算法思想
快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
也就是先确定一个基准元素,每次都将基准元素排到正确的位置,保证它左边的元素都小于或等于它,它右边的元素都大于或等于它,然后对其左边和右边的全部元素分别再快速排序。
算法步骤
- 在数组中选择一个基准数(通常为数组第一个);
- 将数组中小于基准数的数据移动到基准数左边,大于基准数的移动到右边;
- 对于基准数左右两边的数组,不断重复以上两个过程,直到每个子集只有一个元素,即为全部有序
以下是一次快速排序的例子:
完整c++代码
3.1、设置两个变量 first、last,排序开始时:first=0,last=size-1。
3.2、整个数组找基准正确位置,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面
- 默认数组的第一个数为基准数据,赋值给key,即key=array[first]。
- 因为默认数组的第一个数为基准,所以从后面开始向前搜索(last),找到第一个小于key的array[last],就将 array[last] 赋给 array[first],即 array[first] = array[last]。(循环条件是 first < last && array[last] >= temp)
- 此时从前面开始向后搜索(first),找到第一个大于key的array[first],就将 array[first] 赋给 array[last],即 array[last] = array[first]。(循环条件是first < last && array[first] <= temp)
- 循环 2-3 步骤,直到 first=last,该位置就是基准位置。把基准数据赋给当前位置。
3.3、第一趟找到的基准位置,作为下一趟的分界点。
3.4、递归调用(recursive)分界点前和分界点后的子数组排序,重复1、2、3、4的步骤。
3.5、最终就会得到排序好的数组。
#include <iostream>
#include <vector>
using namespace std;
void display(vector<int> &array, int size) {
for (int i = 0; i < size; i++) {
cout << array[i] << " ";
}
cout << endl;
}
//快速排序
void quick_sort(vector<int> &array, int start, int end){
if (start >= end) return;//如果子集里只有一个元素则不用排序
//将大于基准元素的值移动至右边,小于基准元素的值移动至左边
int first = start, last = end, temp = array[first];
while (first < last){
//一直将last向左移动至array[last] < temp或first >= last
while (first < last && array[last] >= temp){
--last;
}
array[first] = array[last];
//一直将first向右移动至array[first] > temp或first >= last
while (first < last && array[first] <= temp){
++first;
}
array[last] = array[first];
}
array[first] = temp;
quick_sort(array, start, first - 1);//将基准元素的左子集进行排序
quick_sort(array, first + 1, end);//将基准元素的右子集进行排序
}
int main() {
int size = 20;
vector<int> array(20, 0); // 数组初始化
for (int i = 0; i < 5; i++) { // 数组个数
for (int j = 0; j < size; j++) { // 数组大小
array[j] = rand() % 100; // 随机生成数大小 0~99
}
cout << "原来的数组" << endl;
display(array, size);
quick_sort(array, 0, size - 1);
cout << "排序后的数组" << endl;
display(array, size);
cout << endl;
}
system("pause");
return 0;
}
算法分析
时间复杂度:
最
好
:
O
(
n
l
o
g
2
n
)
最好:O ( n l o g _2 n )
最好:O(nlog2n)
最 坏 : O ( n 2 ) 最坏:O ( n^2 ) 最坏:O(n2)
平 均 : O ( n l o g 2 n ) 平均:O ( n l o g_2 n ) 平均:O(nlog2n)
空间复杂度:
空
间
复
杂
度
:
O
(
n
l
o
g
2
n
)
空间复杂度:O ( n l o g_2 n )
空间复杂度:O(nlog2n)
稳定性:不稳定