Vision Transformer

Vision Transformer

1. 模型介绍

在计算机视觉领域中,多数算法都是保持CNN整体结构不变,在CNN中增加attention模块或者使用attention模块替换CNN中的某些部分。有研究者提出,没有必要总是依赖于CNN。因此,作者提出ViT算法,仅仅使用Transformer结构也能够在图像分类任务中表现很好。

受到NLP领域中Transformer成功应用的启发,ViT算法中尝试将标准的Transformer结构直接应用于图像,并对整个图像分类流程进行最少的修改。具体来讲,ViT算法中,会将整幅图像拆分成小图像块,然后把这些小图像块的线性嵌入序列作为Transformer的输入送入网络,然后使用监督学习的方式进行图像分类的训练。

该算法在中等规模(例如ImageNet)以及大规模(例如ImageNet-21K、JFT-300M)数据集上进行了实验验证,发现:

  • Transformer相较于CNN结构,缺少一定的平移不变性和局部感知性,因此在数据量不充分时,很难达到同等的效果。具体表现为使用中等规模的ImageNet训练的Transformer会比ResNet在精度上低几个百分点。
  • 当有大量的训练样本时,结果则会发生改变。使用大规模数据集进行预训练后,再使用迁移学习的方式应用到其他数据集上,可以达到或超越当前的SOTA水平。

2. 模型结构与实现

ViT算法的整体结构如 图1 所示。

图1 ViT算法结构示意图

图1 ViT算法结构示意图

2.1. 图像分块嵌入

考虑到在Transformer结构中,输入是一个二维的矩阵,矩阵的形状可以表示为 ( N , D ) (N,D) (N,D),其中 N N N 是sequence的长度,而 D D D 是sequence中每个向量的维度。因此,在ViT算法中,首先需要设法将 H × W × C H \times W \times C H×W×C 的三维图像转化为 ( N , D ) (N,D) (N,D) 的二维输入。

ViT中的具体实现方式为:将 H × W × C H \times W \times C H×W×C 的图像,变为一个 N × ( P 2 × C ) N \times (P^2 \times C) N×(P2×C) 的序列。这个序列可以看作是一系列展平的图像块,也就是将图像切分成小块后,再将其展平。该序列中一共包含了 N = H W / P 2 N=HW/P^2 N=HW/P2 个图像块,每个图像块的维度则是 ( P 2 × C ) (P^2 \times C) (P2×C)。其中 P P P 是图像块的大小, C C C 是通道数量。经过如上变换,就可以将 N N N 视为sequence的长度了。

但是,此时每个图像块的维度是 ( P 2 × C ) (P^2 \times C) (P2×C),而我们实际需要的向量维度是 D D D,因此我们还需要对图像块进行 Embedding。这里 Embedding 的方式非常简单,只需要对每个 ( P 2 × C ) (P^2 \times C) (P2×C) 的图像块做一个线性变换,将维度压缩为 D D D 即可。

上述对图像进行分块以及 Embedding 的具体方式如 图2 所示。

图2 图像分块嵌入示意图

图2 图像分块嵌入示意图

具体代码实现如下所示:

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
        super().__init__()
        img_size = (img_size, img_size)
        patch_size = (patch_size, patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."

        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x

2.2. 多头注意力

将图像转化为 N × ( P 2 × C ) N \times (P^2 \times C) N×(P2×C) 的序列后,就可以将其输入到 Transformer 结构中进行特征提取了,如 图3 所示。

图3 多头注意力示意图

图3 多头注意力示意图

Transformer 结构中最重要的结构就是 Multi-head Attention,即多头注意力结构。具有2个head的 Multi-head Attention 结构如 图4 所示。输入 a i a^i ai 经过转移矩阵,并切分生成 q ( i , 1 ) q^{(i,1)} q(i,1) q ( i , 2 ) q^{(i,2)} q(i,2) k ( i , 1 ) k^{(i,1)} k(i,1) k ( i , 2 ) k^{(i,2)} k(i,2) v ( i , 1 ) v^{(i,1)} v(i,1) v ( i , 2 ) v^{(i,2)} v(i,2),然后 q ( i , 1 ) q^{(i,1)} q(i,1) k ( i , 1 ) k^{(i,1)} k(i,1) 做 attention,得到权重向量 α \alpha α,将 α \alpha α v ( i , 1 ) v^{(i,1)} v(i,1) 进行加权求和,得到最终的 b ( i , 1 ) ( i = 1 , 2 , … , N ) b^{(i,1)}(i=1,2,…,N) b(i,1)(i=1,2,,N),同理可以得到 b ( i , 2 ) ( i = 1 , 2 , … , N ) b^{(i,2)}(i=1,2,…,N) b(i,2)(i=1,2,,N)。接着将它们拼接起来,通过一个线性层进行处理,得到最终的结果。

图4 多头注意力

图4 多头注意力

其中,使用 q ( i , j ) q^{(i,j)} q(i,j) k ( i , j ) k^{(i,j)} k(i,j) v ( i , j ) v^{(i,j)} v(i,j) 计算 b ( i , j ) ( i = 1 , 2 , … , N ) b^{(i,j)}(i=1,2,…,N) b(i,j)(i=1,2,,N) 的方法是缩放点积注意力 (Scaled Dot-Product Attention)。 结构如 图5 所示。首先使用每个 q ( i , j ) q^{(i,j)} q(i,j) 去与 k ( i , j ) k^{(i,j)} k(i,j) 做 attention,这里说的 attention 就是匹配这两个向量有多接近,具体的方式就是计算向量的加权内积,得到 α ( i , j ) \alpha_{(i,j)} α(i,j)。这里的加权内积计算方式如下所示:

α ( 1 , i ) = q 1 ∗ k i / d \alpha_{(1,i)} = q^1 * k^i / \sqrt{d} α(1,i)=q1ki/d

其中, d d d q q q k k k 的维度,因为 q ∗ k q*k qk 的数值会随着维度的增大而增大,因此除以 d \sqrt{d} d 的值也就相当于归一化的效果。

接下来,把计算得到的 α ( i , j ) \alpha_{(i,j)} α(i,j) 取 softmax 操作,再将其与 v ( i , j ) v^{(i,j)} v(i,j) 相乘。

图5 缩放点积注意力

图5 缩放点积注意力

具体代码实现如下所示:

class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x):
        # [batch_size, num_patches + 1, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
        # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
        # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
        # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

2.3. 多层感知机(MLP)

Transformer 结构中还有一个重要的结构就是 MLP,即多层感知机,如 图6 所示。

图6 MLP多层感知机的结构

具体代码实现如下所示:

class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

2.4. DropPath

除了以上重要模块意外,代码实现过程中还使用了DropPath(Stochastic Depth)来代替传统的Dropout结构,DropPath可以理解为一种特殊的 Dropout。其作用为:若x为输入的张量,其通道为[B,C,H,W],那么drop_path的含义为在一个Batch_size中,随机有drop_prob的样本,不经过主干,而直接由分支进行恒等映射。

具体实现如下:

def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

2.5. 基础模块

基于上面实现的 Attention、MLP、DropPath模块就可以组合出 Vision Transformer 模型的一个基础模块,如 图8 所示。

图8 基础模块示意图

图8 基础模块示意图

基础模块的具体实现如下:

class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

2.6. 定义ViT网络

基础模块构建好后,就可以构建完整的ViT网络了。在构建完整网络结构之前,还需要给大家介绍几个模块:

  • Class Token

假设我们将原始图像切分成 3 × 3 3 \times 3 3×3 共9个小图像块,最终的输入序列长度却是10,也就是说我们这里人为的增加了一个向量进行输入,我们通常将人为增加的这个向量称为 Class Token。那么这个 Class Token 有什么作用呢?

我们可以想象,如果没有这个向量,也就是将 N = 9 N=9 N=9 个向量输入 Transformer 结构中进行编码,我们最终会得到9个编码向量,可对于图像分类任务而言,我们应该选择哪个输出向量进行后续分类呢?因此,ViT算法提出了一个可学习的嵌入向量 Class Token,将它与9个向量一起输入到 Transformer 结构中,输出10个编码向量,然后用这个 Class Token 进行分类预测即可。

其实这里也可以理解为:ViT 其实只用到了 Transformer 中的 Encoder,而并没有用到 Decoder,而 Class Token 的作用就是寻找其他9个输入向量对应的类别。

  • Positional Encoding

按照 Transformer 结构中的位置编码习惯,这个工作也使用了位置编码。不同的是,ViT 中的位置编码没有采用原版 Transformer 中的 s i n c o s sincos sincos 编码,而是直接设置为可学习的 Positional Encoding。

  • MLP Head

得到输出后,ViT中使用了 MLP Head对输出进行分类处理,这里的 MLP Head 由 LayerNorm 和两层全连接层组成,并且采用了 GELU 激活函数。

具体代码如下所示:

class VisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
                 embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
                 qk_scale=None, drop_ratio=0.,
                 attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
                 act_layer=None):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_c (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            embed_layer (nn.Module): patch embedding layer
            norm_layer: (nn.Module): normalization layer
        """
        super(VisionTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 2 if distilled else 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()


        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        if self.dist_token is not None:
            nn.init.trunc_normal_(self.dist_token, std=0.02)

        nn.init.trunc_normal_(self.cls_token, std=0.02)
        self.apply(_init_vit_weights)


    def forward_features(self, x):
        # [B, C, H, W] -> [B, num_patches, embed_dim]
        x = self.patch_embed(x)  # [B, 196, 768]
        # [1, 1, 768] -> [B, 1, 768]
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)

        x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]


        x = self.pos_drop(x + self.pos_embed)
        x = self.blocks(x)
        x = self.norm(x)
        return x[:, 0]

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)

3. 模型特点

  • 作为CV领域最经典的 Transformer 算法之一,不同于传统的CNN算法,ViT尝试将标准的Transformer结构直接应用于图像,并对整个图像分类流程进行最少的修改。
  • 为了满足 Transformer 输入结构的要求,将整幅图像拆分成小图像块,然后把这些小图像块的线性嵌入序列输入到网络。同时,使用了Class Token的方式进行分类预测。
  • 3
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值