一面:过
平安科技一共就一面,但是之前要做一个IQ,EQ测试,只要不是有太大偏差应该没问题吧。
重要的事说三遍,没问基础,没问基础,没问基础。
1.Giou loss主要是弥补IOU-loss的什么缺陷?请说明一下为了在two-stage里面的效果没有one-stage里面效果好?
弥补了IOU等于0的缺陷,并且增加了一个距离的参考量,对IOU等于0时,距离gd的bbox的远近给不同惩罚。
因为one-stage直接预测bbox,而two-stage会有一个提取ROI的范围,例如RPN会先生成一个框,进一步压缩了范围,导致公式中的gd与bbox不会太远。
2.深度可分离卷积的主要作用是什么?难道除了提升速度,减少参数没什么别的作用了吗?
先介绍深度可分离卷积,作用是减少参数量,并且可以提升前项的速度。此时我回答的是增加channel之间的响应,毕竟每个channel都卷积产生了一个数(并不知道答案,就是乱说)。
3.参加的比赛?为什么人脸用的是残差,不是最新的技术?如果是现在做,你会怎么修改?
因为那时候并没有养成去git上搜索的习惯(主要就是不会,不会,不会,),如果现在做,会用一些线程的API,比如旷世等等。
4.项目中你用到的opencv,流程介绍一下呢?有没有对匹配方便做了一下工作?
巴拉巴拉,争论了一大堆,他说算了(就这么算了?算了?算了?),没有做匹配的,说自己训练的是一个特征提取器,也不知道他有没有懂我的意思,反正这个话题就过了。
当然还有一些别的问题,主要是这么多,还是根据简历上写的来问的,最后就过了。。。