YOLOV1与V3的(模型,loss要点详述)

YOLOV1

正样本的选择:

目标中心点落在哪个grid上,然后计算这个grid的9个先验框(anchor)和目标真实位置的IOU值(直接计算,不考虑二者的中心位置),取IOU值最大的先验框和目标匹配。于是,找到的该grid中的 该anchor 负责预测这个目标,其余的网格、anchor都不负责。

负样本的选择:

计算各个先验框和所有的目标ground truth之间的IOU,如果某先验框和图像中所有物体最大的IOU都小于阈值(一般0.5),那么就认为该先验框不含目标,记作负样本,其置信度应当为0

不参与计算部分

这部分虽然不负责预测对象,但IOU较大,可以认为包含了目标的一部分,不可简单当作负样本,所以这部分不参与误差计算。

LOSS

yolo算法将目标看成回归问题,采用sum-square函数,对不同的部分采用了不同的权重值。
由4部分构成:
1.x,y 均方误差
2.w,h均方误差
3.置信度loss(其实是否含有object误差)

这里其实有个很重要的思想,置信度有时是单纯的分类置信度,有时候可能是结合了iou(在yolo里面第一次见到),YOLO就是结合了IOU的置信度
**onfidence表示:cell预测的bounding box包含一个物体的置信度有多高并且该bounding box预测准确度有多大,用公式表示为:在这里插入图片描述


4.cls分类(yolo1用的是mse,这是p就是分类概率,也就是进过softmax输出的值)
在这里插入图片描述

yolo1的原理:

把网络分成sxs个网格(s通常为7),对于每一个网格要预测出B个边框,每个边框五个坐标(x,y,w,h)和一个分数(来预测这个边框和真是的边框有多接近),每个网格也会预测类别,所以一共有S × S × (B ∗ 5 + C) 个张量
在这里插入图片描述

在这里插入图片描述
这就是yolo的网络模型,对于卷积层和全连接层,采用Leaky ReLU激活函数。但是最后一层却采用线性激活函数,最后出来的是边界框的预测,之前说的是7x7的网格,那么最后出来的就是7x7x30,20类,2个置信度(判断有没有物体),两个框,一个框(x,y,w,h)

================================================================================================================================================================================

YOLOV3

Backbone去除了pooling与fc,全用卷积代替,用了darknet 53,总的来说就是conv+bn+leaky_relu,YOLO v3中采用类似FPN的upsample和融合做法(最后融合了3个scale,其他两个scale的大小分别是26×26和52×52),在多个scale的feature map上做检测。

1,y2和y3的深度都是255,边长的规律是13:26:52。yolo v3设定的是每个网格单元预测3个box,所以每个box需要有(x, y, w, h, confidence)五个基本参数,然后还要有80个类别的概率。所以3×(5 + 80) = 255。这个255就是这么来的。最后卷积核的channel是255。
YOLOV3将分类loss从v1的mse变成了cross-entropy,用了类似ssd的三个尺度作为输出的head。

网络结构图:
在这里插入图片描述

loss

还是四个loss。

CrossEntropyLoss()内部将input做了softmax后再与label进行交叉熵!BCEloss()内部啥也没干直接将input与label做了交叉熵!BCEWithLogitsLoss()内部将input做了sigmoid后再与label进行交叉熵!

在这里插入图片描述

https://blog.csdn.net/shengyan5515/article/details/84036734
https://blog.csdn.net/litt1e/article/details/88907542
https://blog.csdn.net/wqwqqwqw1231/article/details/90667046

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值