机器学习
bloomerOAO
记录感悟,体会成长
展开
-
自编码器原理和实现
自编码器一、原理:将图像进行压缩,压缩的特征图能够保存原图像的主要特征,即根据特征图能够再次恢复原始图像。二、具体实现方法:自编码器分为两部分:编码和解码。编码可以使用任一卷积网络,可以根据训练数据选择,像MNIST手写数字可以选用简单的神经网络,比如LeNet。解码部分就是反向的神经网络,这样输入和输出图像大小相同,可以直接利用误差平方作为损失函数进行训练。三、实验结果:(1)生成20幅图像:当然这里肯定是要输入20幅原始图像,然后才能查看生成的图像,否则自己设定的隐空间变量生成的图像可能没有原创 2021-06-30 09:09:51 · 1621 阅读 · 0 评论 -
鸢尾花分类代码实现
鸢尾花分类代码实现import pandas as pdimport numpy as npfrom matplotlib import pyplot as plt#sigmoid functiondef sigmoid(x): return 1.0/(1+np.exp(-x))#dsigmoid functiondef dsigmoid(x): return sigmoid(x)*(1-sigmoid(x))#code flowers speciesdef codeN原创 2021-04-24 15:18:02 · 1432 阅读 · 1 评论 -
二维样本数据和标签回归及LDA代码实现
二维样本数据和标签回归及LDA代码实现1、先上效果图:纠正一下横纵坐标,横坐标为x1,纵坐标为x2,这是样本与标签回归的二维结果图。2、LDA结果图:图中的是投影直线和分类面3、上代码:样本通过高斯分布生成的随机数,标签为+1,-1.import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.pyplot import MultipleLocatorfrom sklearn import model_select原创 2021-04-13 16:14:28 · 669 阅读 · 0 评论