Ants
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 26281 | Accepted: 10286 |
Description
An army of ants walk on a horizontal pole of length l cm, each with a constant speed of 1 cm/s. When a walking ant reaches an end of the pole, it immediatelly falls off it. When two ants meet they turn back and start walking in opposite directions. We know the original positions of ants on the pole, unfortunately, we do not know the directions in which the ants are walking. Your task is to compute the earliest and the latest possible times needed for all ants to fall off the pole.
Input
The first line of input contains one integer giving the number of cases that follow. The data for each case start with two integer numbers: the length of the pole (in cm) and n, the number of ants residing on the pole. These two numbers are followed by n integers giving the position of each ant on the pole as the distance measured from the left end of the pole, in no particular order. All input integers are not bigger than 1000000 and they are separated by whitespace.
Output
For each case of input, output two numbers separated by a single space. The first number is the earliest possible time when all ants fall off the pole (if the directions of their walks are chosen appropriately) and the second number is the latest possible such time.
Sample Input
2 10 3 2 6 7 214 7 11 12 7 13 176 23 191
Sample Output
4 8 38 207
我胡汉三又回来啦!
目前准备把白书弄明白,要打比赛了啊不能太丢人。
好了我们进入正题,这是白书p18的一道有意思的题,题中蚂蚁相遇时不能交错通过,只能各自反向爬回去。但是,既然我们对每个蚂蚁没有区分,那么我们也可以认为它们交换了并沿着自己的路线一直走到杆外(你可真是个机灵鬼),大家应该都能想到这一点的。这里给一下书中的代码:
//输入
int L, n;
int x[MAX_N];
void solve()
{
//计算最短时间
int minT = 0;
for(int i = 0; i < n; i++)
{
minT = max(minT, min(x[i], L - x[i]));
}
//计算最长时间
int maxT = 0;
for(int i = 0; i < n; i++)
{
maxT = max(maxT, max(x[i], L - x[i]));
}
printf("%d %d\n",minT, maxT);
}
这里不是想表达这个代码又多优秀我才把它敲一遍,我觉得它有个我不常用,也许大家也疏忽的地方,那就是用max,min可以简化很多步骤,也很好看,这点值得我们学习使用。
再菜也要加油!avbody!