【论文】时差测量的定位精度GDOP分析(一)

无源时差定位与跟踪技术研究------陈莹莹

1. 时差定位原理

在这里插入图片描述

2. 时差定位精度分析

在这里插入图片描述
上式的说明:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
仿真结果:

clc; 
clear; 
x2=-12.99; x3=12.99; xt=0; x1=0;
y2=7.5; y3=7.5; yt=-15; y1=0; 
z2=0.01; z3=0; zt=0.01; z1=0.01;
z=15; 
y=-200:1:200;x=-200:1:200; 
  
for i=1:401 
    for j=1:401  
        m=x(i); 
        n=y(j); 
        r1=((m-x1).^2+(n-y1).^2+(z-z1).^2).^(1/2); 
        r2=((m-x2).^2+(n-y2).^2+(z-z2).^2).^(1/2); 
        r3=((m-x3).^2+(n-y3).^2+(z-z3).^2).^(1/2); 
        rt=((m-xt).^2+(n-yt).^2+(z-zt).^2).^(1/2); 
        c11=(m-x1)/r1;c21=(m-x2)/r2;c31=(m-x3)/r3;ct1=(m-xt)/rt; 
        c12=(n-y1)/r1;c22=(n-y2)/r2;c32=(n-y3)/r3;ct2=(n-yt)/rt; 
        c13=(z-z1)/r1;c23=(z-z2)/r2;c33=(z-z3)/r3;ct3=(z-zt)/rt; 
        
c=[(-ct1+c11) (-ct2+c12) (-ct3+c13);(-ct1+c21) (-ct2+c22) (-ct3+c23);(-ct1+c31) (-ct2+c32) (-ct3+c33)]; 

        b=inv(c'*c)*(c'); 
        b11=b(1); 
        b12=b(4); 
        b13=b(7); 
        b21=b(2); 
        b22=b(5); 
        b23=b(8); 
        b31=b(3); 
        b32=b(6); 
        b33=b(9); 
        
        sigmap=0.5;%测量误差的标准差 
        sigmas=0.0075;%测时误差 
        eta=0.35;%Ri站距离和测量之间的相关系数 
        
        sigma11=sigmap.^2+sigmas.^2*2; 
        sigma12=eta*sigmap.^2+sigmas.^2; 
        sigma13=eta*sigmap.^2+sigmas.^2; 
        sigma21=eta*sigmap.^2+sigmas.^2;
        sigma22=sigmap.^2+sigmas.^2*2; 
        sigma23=eta*sigmap.^2+sigmas.^2;       
        sigma31=eta*sigmap.^2+sigmas.^2; 
        sigma32=eta*sigmap.^2+sigmas.^2;
        sigma33=sigmap.^2+sigmas.^2*2; 
        sigmax2=b11*b11*sigma11+b11*b12*sigma12+b11*b13*sigma13+b12*b11*sigma21+b12*b12*sigma22+b12*b13*sigma23+b13*b11*sigma31+b13*b12*sigma32+b13*b13*sigma33; 
        sigmay2=b21*b21*sigma11+b21*b22*sigma12+b21*b23*sigma13+b22*b21*sigma21+b22*b22*sigma22+b22*b23*sigma23+b23*b21*sigma31+b23*b22*sigma32+b23*b23*sigma33; 
        sigmaz2=b31*b31*sigma11+b31*b32*sigma12+b31*b33*sigma13+b32*b31*sigma21+b32*b32*sigma22+b32*b33*sigma23+b33*b31*sigma31+b33*b32*sigma32+b33*b33*sigma33;
        
gdop(j,i)=(sigmax2+sigmay2+sigmaz2).^(1/2); 
    end 
end 
figure(1); 
%contour(Z,n),n指定了等高线的条数,用于绘制矩阵的等高线
[c,handle]=contour(x,y,gdop,20);
clabel(c,handle); 
xlabel('x方向(单位:km)'); 
ylabel('y方向(单位:km)'); 
title('GDOP图');

在这里插入图片描述

<think>好的,我现在需要帮助用户分析时差频差无源定位的精度与GDOP的关系。首先,我需要理解用户的问题。用户提到了GDOP在无源定位中的作用,特别是时差(TDOA)和频差(FDOA)的情况。用户可能想了解如何通过GDOP来评估定位系统的精度,以及具体的分析方法。 首先,我得回顾GDOP的基本概念。GDOP是几何精度因子,它反映了定位系统中几何布局对精度的影响。GDOP值越小,定位精度越高。在时差和频差定位中,GDOP的计算涉及到接收节点的位置和测量误差的协方差矩阵。因此,分析GDOP定位精度的关系需要从这些方面入手。 接下来,我需要整理分析的步骤。根据引用中的内容,GDOP的计算涉及接收节点的位置和测量数据。可能需要构建观测矩阵,计算协方差矩阵,然后通过矩阵运算得到GDOP。用户提供的参考文献[3]提到了协方差的计算,这可能涉及到具体的数学公式,比如协方差矩阵的构建,以及如何将其与GDOP联系起来。 然后,我需要考虑数学模型。时差定位通常使用TDOA,而频差则是FDOA。两者的结合可能形成联合定位模型。GDOP的计算可能基于这些测量值的联合协方差矩阵。可能需要推导雅可比矩阵或观测矩阵,然后利用矩阵的逆或特征值来计算GDOP。 另外,用户提到的Matlab代码可能有错误,比如在协方差计算的部分。这可能涉及到如何在代码中正确实现协方差的计算,以及如何将GDOP分析转化为实际的数值结果。需要确保数学公式的正确性,比如协方差矩阵的维度和元素是否正确,以及GDOP的计算是否遵循正确的步骤。 用户可能还希望了解如何优化GDOP,比如通过调整接收节点的位置来降低GDOP值,从而提高定位精度。这可能涉及到数值优化方法,或者分析不同几何布局对GDOP的影响。 最后,我需要确保回答结构清晰,分步骤说明分析方法,并结合用户提供的引用内容,特别是GDOP的计算步骤和协方差的处理。同时,生成的相关问题要围绕GDOP分析、优化方法、影响因素和实际应用展开,帮助用户进步深入理解。</think>### 时差频差无源定位精度GDOP关系分析 #### 1. **核心概念** 时差(TDOA)和频差(FDOA)无源定位通过测量信号到达不同接收节点的时延差和多普勒频移差实现目标定位。其精度受**几何分布因子(GDOP)**直接影响[^1]。GDOP定义为测量误差协方差矩阵与位置误差协方差矩阵的比值,数学表达为: $$ \text{GDOP} = \sqrt{\text{tr}((H^T H)^{-1})} $$ 其中$H$为观测矩阵,$\text{tr}$表示矩阵的迹。 #### 2. **分析步骤** 1. **观测模型建立** - 时差观测方程:$\Delta t_{ij} = \frac{\|\mathbf{r}_i - \mathbf{s}\| - \|\mathbf{r}_j - \mathbf{s}\|}{c}$ - 频差观测方程:$\Delta f_{ij} = \frac{f_0}{c} \left( \frac{(\mathbf{v}_i - \mathbf{v}_s) \cdot (\mathbf{r}_i - \mathbf{s})}{\|\mathbf{r}_i - \mathbf{s}\|} - \frac{(\mathbf{v}_j - \mathbf{v}_s) \cdot (\mathbf{r}_j - \mathbf{s})}{\|\mathbf{r}_j - \mathbf{s}\|} \right)$ 其中$\mathbf{r}_i$为接收节点位置,$\mathbf{s}$为目标位置,$\mathbf{v}_s$为目标速度,$c$为光速[^2]。 2. **误差协方差矩阵计算** 时差和频差测量误差的协方差矩阵为: $$ \mathbf{R} = \begin{bmatrix} \sigma_{\Delta t}^2 & \rho \sigma_{\Delta t} \sigma_{\Delta f} \\ \rho \sigma_{\Delta t} \sigma_{\Delta f} & \sigma_{\Delta f}^2 \end{bmatrix} $$ 其中$\rho$为时差与频差的相关系数。 3. **GDOP计算** 通过观测矩阵$H$和误差协方差矩阵$\mathbf{R}$计算GDOP: $$ \text{GDOP} = \sqrt{\text{tr}((H^T \mathbf{R}^{-1} H)^{-1})} $$ 较低的GDOP值对应更高的定位精度[^3]。 #### 3. **关键影响因素** - **接收节点几何分布**:共线或对称分布会增大GDOP - **测量误差特性**:时差/频差噪声方差$\sigma_{\Delta t}^2, \sigma_{\Delta f}^2$ - **目标动态特性**:速度$\mathbf{v}_s$影响频差观测灵敏度 #### 4. **Matlab实现要点** ```matlab % 示例代码框架 H = [梯度矩阵]; % 观测矩阵 R = diag([sigma_t^2, sigma_f^2]); % 误差协方差矩阵 GDOP = sqrt(trace(inv(H' * inv(R) * H))); ``` 需注意协方差矩阵$\mathbf{R}$的维度与观测量的匹配性[^4]。
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我一直在流浪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值