最近在分析Python招聘信息的数据, 使用职位描述分词来判断分类不是很精准, 于是打算使用分词构造一个特征, 然后使用决策树来分类(下次试试聚类算法), 这样误差会小很对, 可以让我们更加精准的完成一份高质量的数据报告.
- 首先看看原始数据吧
- 接下来我们要通过分词和人工识别来构建专家样本数据
注: 原计划训练数据至少2000条, 然后先人工识别了100条就忍不住想试一试
由于有20个特征和4个分类数据, 这个树叶也蛮大的, 这是第一次测试结果, 精度达到了90%
注: 再次经过人工审核,发现后端和数据科学识别的比较准, 测试相对不准, 原因肯定是样本数据中关于测试的特别少, 再进一步优化模型还得人再来一波人工识别啊! (数据集的样本一定要均衡)
目测效果还可以, 接下来就只需要构造样本, 优化算法了,等我完成这个项目后会把整个项目写一篇博客, 我们共同学习, 共同进步!