数据挖掘篇: 使用决策树识别Python招聘信息所属类别(分支)

在这里插入图片描述

最近在分析Python招聘信息的数据, 使用职位描述分词来判断分类不是很精准, 于是打算使用分词构造一个特征, 然后使用决策树来分类(下次试试聚类算法), 这样误差会小很对, 可以让我们更加精准的完成一份高质量的数据报告.
  1. 首先看看原始数据吧
    在这里插入图片描述
  2. 接下来我们要通过分词和人工识别来构建专家样本数据
    在这里插入图片描述
    注: 原计划训练数据至少2000条, 然后先人工识别了100条就忍不住想试一试
    在这里插入图片描述
    由于有20个特征和4个分类数据, 这个树叶也蛮大的, 这是第一次测试结果, 精度达到了90%
    在这里插入图片描述
    在这里插入图片描述
    注: 再次经过人工审核,发现后端和数据科学识别的比较准, 测试相对不准, 原因肯定是样本数据中关于测试的特别少, 再进一步优化模型还得人再来一波人工识别啊! (数据集的样本一定要均衡)
    目测效果还可以, 接下来就只需要构造样本, 优化算法了,等我完成这个项目后会把整个项目写一篇博客, 我们共同学习, 共同进步!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值