机器学习学习笔记(十)之逻辑回归与二分类

一、逻辑回归

  • 是一个分类算法
  • 逻辑回归的输入及时一个线性回归的结果

1、sigmoid函数(h(w)线性回归):
在这里插入图片描述

  • 判断标准
    • 回归的结果输入到sigmoid函数当中
    • 输出结果:[0,1]区间的一个概率值,默认为0.5位阈值
      在这里插入图片描述

2、损失及优化

  • 损失:逻辑回归的损失,称之为对数似然损失
    • 当真实值y=1时,我们希望预测值h(x)越大越好
    • 当真实值y=0时,我们希望预测值h(x)越小越好
  • 综合完整损失函数:

在这里插入图片描述

  • 下表的阈值定为0.6
    在这里插入图片描述
  • 优化:
    • 同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

二、API

  • sklearn.linear_model.LogisticRegression(solver=‘liblinear’, penalty=‘l2’, C = 1.0)
    • solver可选参数:{‘liblinear’, ‘sag’, ‘saga’,‘newton-cg’, ‘lbfgs’},
      • 默认: ‘liblinear’;用于优化问题的算法
      • 对于小数据集来说,“liblinear”是个不错的选择,而“sag”和’saga’对于大型数据集会更快
      • 对于多类问题,只有’newton-cg’, ‘sag’, 'saga’和’lbfgs’可以处理多项损失;“liblinear”仅限于“one-versus-rest”分类
    • penalty:正则化的种类
    • C:正则化力度

默认将类别数量少的当做正例

LogisticRegression方法相当于 SGDClassifier(loss=“log”, penalty=" "),SGDClassifier实现了一个普通的随机梯度下降学习。而使用LogisticRegression(实现了SAG)

三、分类评估方法

1、混淆矩阵

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类
在这里插入图片描述

2、精确率与召回率

  • 精确率:预测结果为正例样本中真实为正例的比例(了解)
    在这里插入图片描述

  • 召回率:真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)
    在这里插入图片描述

3、F1-score

  • 还有其他的评估标准,F1-score,反映了模型的稳健型
    在这里插入图片描述

4、分类评估报告API

  • sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

    • y_true:真实目标值
    • y_pred:估计器预测目标值
    • labels:指定类别对应的数字
    • target_names:目标类别名称
    • eturn:每个类别精确率与召回率

四、ROC曲线和AUC指标

1、TPR和FPR

  • TPR = TP / (TP + FN) — 正例的召回率
    • 所有真实类别为1的样本中,预测类别为1的比例
  • FPR = FP / (FP + TN) — 反例的召回率
    • 所有真实类别为0的样本中,预测类别为1的比例

2、ROC曲线

  • ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5

在这里插入图片描述
3、AUC指标

  • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本得分的概率

  • AUC的范围在[0, 1]之间,并且越接近1越好,越接近0.5属于乱猜

  • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。

  • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

  • AUC<0.5的情况为反向预测

4、AUC计算API

  • sklearn.metrics.roc_auc_score(y_true, y_score)
    • 计算ROC曲线面积,即AUC值
    • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
    • y_score:预测得分,可以是正类的估计概率、置信值或者分类器方法的返回值

AUC只能用来评价二分类
AUC非常适合评价样本不平衡中的分类器性能

五、案例

  1. 获取数据:读取的时候加上names
  2. 数据处理:处理缺失值
  3. 数据集划分
  4. 特征工程:无量纲化处理——标准化
  5. 逻辑回归预估器
  6. 模型评估
import pandas as pd
import numpy as np

# 1、读取数据
path = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
column_name = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
                   'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
                   'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv(path,names = column_name)

# 2、缺失值处理
# 1)替换—>np.nan
data = data.replace(to_replace="?", value=np.NaN)
# 2)删除缺失文本
data = data.dropna(inplace = True)
data.isnull().any() # 说明不存在缺失值

# 3、划分数据集
from sklearn.model_selection import train_test_split

# 筛选特征值和目标值
x = data.iloc[:, 1:10]
y = data["Class"]
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)

# 4、特征工程(标准化)
from sklearn.preprocessing import StandardScaler

transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 5.机器学习(逻辑回归)
from sklearn.linear_model import LogisticRegression

estimator = LogisticRegression()
estimator.fit(x_train, y_train)

# 6、逻辑回归的模型参数:回归系数和偏置
print('回归系数:\n',estimator.coef_)
print('偏置:\n',estimator.intercept_)

# 7.模型评估
y_predict = estimator.predict(x_test)
print('预测结果:\n',y_predict)
score = estimator.score(x_test, y_test)
print('准确率:\n',score)

# 8、查看精确率、召回率、F1-score
from sklearn.metrics import classification_report
report = classification_report(y_test,y_predict,labels=[2,4],target_names=['良性','恶性'])
print(report)

# 9、查看AUC指标
# 要求 y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
y_true = np.where(y_test > 3,1,0)

from sklearn.metrics import roc_auc_score
rascore = roc_auc_score(y_true,y_predict)
print('AUC指标:\n',rascore)

运行结果:
# jupyter中显示
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
                   
回归系数:
 [[1.19777169 0.10877967 0.73209957 0.60323232 0.12122898 1.48162508
  0.75112762 0.79980762 0.82133788]]
偏置:
 [-1.0749105]
 预测结果:
 [2 4 4 2 2 2 2 2 2 2 2 2 2 4 2 2 4 4 4 2 4 2 4 4 4 2 4 2 2 2 2 2 4 2 2 2 4
 2 2 2 2 4 2 4 4 4 4 2 4 4 2 2 2 2 2 4 2 2 2 2 4 4 4 4 2 4 2 2 4 2 2 2 2 4
 2 2 2 2 2 2 4 4 4 2 4 4 4 4 2 2 2 4 2 4 2 2 2 2 2 2 4 2 2 4 2 2 4 2 4 4 2
 2 2 2 4 2 2 2 2 2 2 4 2 4 2 2 2 4 2 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 4 2 4
 2 2 4 4 4 2 2 4 4 2 4 4 2 2 2 2 2 4 4 2 2 2 4]
准确率:
 0.9766081871345029
 			#   精确率      召回率             样本结果
              precision    recall  f1-score   support

          良性       0.98      0.98      0.98       111
          恶性       0.97      0.97      0.97        60

    accuracy                           0.98       171
   macro avg       0.97      0.97      0.97       171
weighted avg       0.98      0.98      0.98       171
AUC指标:
 0.9743243243243243
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值