刷题-Leetcode-300. 最长递增子序列

300. 最长递增子序列

题目链接

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence/
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

1 <= nums.length <= 2500
-104 <= nums[i] <= 104

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题目分析

dp[i]指[0,i]内的下标nums数组中最长递增子序列的个数。
初始化dp数组都为1,因为最长递增子序列最少是一个数,也就是1。
在这里插入图片描述

class Solution {
    public int lengthOfLIS(int[] nums) 
    {
        int n = nums.length;
        int dp[] = new int[n];
        for(int i = 0; i < n; i++)
        {
            dp[i] = 1;
        }
        int res = dp[0];
        for(int i = 0; i<n; i++)
        {
            for(int j = 0; j<=i;j++)
            {
                if(nums[i] > nums[j])
                {
                    dp[i] = dp[i] > (dp[j]+1) ? dp[i] : dp[j]+1;
                    res = dp[i] > res ? dp[i] :res;
                }
            }
        }
        return res;
    }
}

穿上衣服我就不认识你了?来聊聊最长上升子序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值