300. 最长递增子序列
题目链接
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence/
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目描述
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1
提示:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目分析
dp[i]指[0,i]内的下标nums数组中最长递增子序列的个数。
初始化dp数组都为1,因为最长递增子序列最少是一个数,也就是1。
class Solution {
public int lengthOfLIS(int[] nums)
{
int n = nums.length;
int dp[] = new int[n];
for(int i = 0; i < n; i++)
{
dp[i] = 1;
}
int res = dp[0];
for(int i = 0; i<n; i++)
{
for(int j = 0; j<=i;j++)
{
if(nums[i] > nums[j])
{
dp[i] = dp[i] > (dp[j]+1) ? dp[i] : dp[j]+1;
res = dp[i] > res ? dp[i] :res;
}
}
}
return res;
}
}