5-五、安装tensorflow

(一)确定tensorflow版本号

安装好Anaconda后就可以安装Tensorflow了

安装tensorflow之前需要确认版本号,tensorflow版本和CUDA以及cuDNN都是有关的,要注意,可以参考以下链接,自己对照表格选择版本。(最终还是要自己实践!!表格不一定对)https://blog.csdn.net/qq_27825451/article/details/89082978

另外tensorflow2.0和tensorflow1.x系列有一定的API出入, tensorflow2.0有些地方不向下兼容tensorflow1.x,需要自己去了解。
见链接https://cloud.tencent.com/developer/article/1519704
在这里插入图片描述
 
 
这里我选择1.13.1版本来尝试(如果没有一一对应的,一般最右边一列是tensorflow对应的CUDA版本的最低要求,可以自行尝试)

补充:1.13有很多系列→1.13.1、1.13.2等等,要注意。否则报错,根据提示修改即可。
例如下图(没有指定是1.13系列的哪个版本就无法安装)
会提示No matching distribution found for tensorflow-gpu==1.13
在这里插入图片描述
 
 

确定好版本后就准备开始安装了。

安装tensorflow一般就是按照官网说的那样,直接在命令行中敲入命令就可以安装:
pip install tensorflow-gpu==1.15
pip是python的包管理软件
官网地址:https://tensorflow.google.cn/install/gpu
在这里插入图片描述
 
 
 
但是这样一般会很慢(除非你可以直接访问国外网站,否则建议更改),这里需要“将pip源更换到国内镜像”,具体步骤见链接
https://blog.csdn.net/sinat_21591675/article/details/82770360

文章给了2个方法,我选择“永久修改”(之后还会有一些其他的安装包需要通过pip安装,比如numpy等,这里直接设置永久,之后就不用再更改了)

镜像源这里采用“豆瓣”(随便选一个,好用就行)
具体步骤如下:

在C盘的“用户”文件夹下创建一个“pip”文件夹
在这里插入图片描述
 
 
在“pip”文件夹下新建一个文本文件,更改名称为pip,后缀名由txt改为ini 在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
 
 
单击“是”,得到文件“pip.ini”
在这里插入图片描述
 
 
右击此文件,选择“编辑”。将会在记事本(或者默认的文本编辑器)中打开
在这里插入图片描述
 
 

粘贴以下内容至文件中,保存并关闭
[global]
index-url = http://pypi.douban.com/simple
[install]
trusted-host = pypi.douban.com
在这里插入图片描述
 
 

现在已经完成了“将pip源更换到国内镜像”

可以通过命令行安装tensorflow了。

建议通过以下方式打开命令行(建议使用管理员模式,避免安装不上)
在这里插入图片描述
在这里插入图片描述
 
 
 
在命令行中输入以下命令。
其中:1.13.1是你要安装的版本号,可以自行修改。注意不能漏了“-gpu”,否则会装成cpu版本。另外如果电脑有其他版本的tensorflow,需要先把那个版本卸载掉才能装新的。
卸载命令为:pip uninstall tensorflow
(卸载过程中可能需要输入y表示确认卸载。)
pip install tensorflow-gpu==1.13.1
在这里插入图片描述
可以看到还是很快的。
在安装tensorflow时会安装其他一些工具包,所以会弹出很多信息。(不知道这个类比是否恰当,如果不对,请指出。我觉得这和Linux中的yum安装很类似,它会自动去解决依赖关系)

 
补充
1)有时候即便下载完,cmd不会立即提示,你要多回车几次;
2)这一过程中难免会有各种各样的报错,根据提示信息修改就好了,一般都会提示你怎么做,再不济就复制报错信息到百度上搜一搜,无他,唯耐心尔。
 
还是花了较长的时间的,以下为结果。可以看到tensorflow-gpu-1.13.1确实安装完了

 
 
安装成功
在这里插入图片描述
 
 
 
 
 
-------------------------------------------------------(意外情况补充)分割线开始----------------------------------------------------
为了做出本教程,我安装了多次,此次意外出现在第一次使用CUDA10.2的时候,现在看来,可能是因为CUDA10.2太新了,缺少了一些必要的库,导致最后验证失败
 
 
这里依然放出来,只是给小白看一下解决思路
在这里插入图片描述
 
上图中有2个提示,一个是红色报错信息“require msgpack”,一个是橙色的警告
 
虽然tensorflow安装成功了,这里不妨解决一下红色报错信息,将之复制后到百度搜索,以下为解决方案https://blog.csdn.net/sunmingyang1987/article/details/102972903
在这里插入图片描述
可以看到msgpack-python没必要安装,因为已经有了,而msgpack还是缺,直接pip install即可。
 
至此红色信息已经解决。
 
至于橙色警告,可以不予理会,直到后面真正报错再尝试解决。原因是我之前遇到过一些问题,折腾来折腾去,最后发现有些东西不能总是用最新版,会有各种各样的错误,比如numpy、pip等等,不妨走一步看一步。
-------------------------------------------------------(意外情况补充)分割线结束----------------------------------------------------

(二)验证tensorflow

安装完tensorflow之后,需要验证一下是否安装成功,是否可以使用

ipython是python的一个交互工具
在这里插入图片描述
 

import tensorflow as tf
如果没有报错,表明CUDA、CUPTI和cuDNN都没有问题
报错一般都是红色以及其他有颜色的,下图中不是报错,只是一些运行过程中的记录信息。
可以看到,import成功,没有报错
在这里插入图片描述
 
 
 
测试gpu是否可以使用
tf.test.is_gpu_available()

可以看到,gpu可以使用。篮框信息解释如下:
总显存:4GB,可用显存3.3GB(以为内系统占了一些显存,所以可以使用的会少一部分)
True表示可以使用gpu
在这里插入图片描述

至此,tensorflow的安装与测试已经完成
 
 
 
 
 
 

上一篇文章:4-四、Anaconda 的安装及检查
下一篇文章:6-六、PyCharm安装

<think>好的,用户想知道在进行CNN和GCN分析时,应该选择安装TensorFlow的CPU版本还是GPU版本。我需要先比较两者的差异,然后根据应用场景给出建议。 首先,性能方面,GPU在处理矩阵运算和并行任务上有明显优势,尤其是CNN中的卷积层和GCN的图传播。应该提到CUDA核心和cuDNN库的作用,比如提升训练速度的例子。 然后是硬件需求,GPU版本需要支持CUDA的NVIDIA显卡,比如RTX系列。如果没有这样的硬件,CPU版本是唯一的选择,但速度会慢很多。 接下来是安装复杂度。GPU版本需要安装CUDA工具包和cuDNN,步骤可能麻烦,而CPU版本直接pip安装就行。用户可能需要指导他们检查显卡兼容性,比如用nvidia-smi命令。 应用场景方面,如果用户的数据集小或者只是做原型验证,CPU可能够用。但对于大规模数据或复杂模型,GPU更合适。另外,GCN可能因为图结构的不同,并行加速效果不如CNN明显,这点需要说明。 还要提到内存的问题,比如GPU显存不足时的处理办法,以及TensorFlow 2.x以后版本的区别,比如tensorflow包已经包含GPU支持,可能需要单独安装CUDA工具。 最后,给出分步选择建议,比如先检查硬件,再看任务规模,最后考虑安装难度。可能用户是研究人员或学生,需要根据他们的实际情况推荐。 确保使用正确的中文术语,数学公式用$...$,比如矩阵乘法$WX$。独立公式用$$...$$,比如卷积操作的定义。同时生成相关问题,比如性能对比、安装步骤、硬件检查方法、处理显存不足等。 需要引用相关文档,比如TensorFlow官方指南和NVIDIA的CUDA支持列表。注意引用标识放在句末,比如[^1]。 检查有没有遗漏点,比如是否提到分布式训练,或者移动端部署的情况,但可能用户主要关注桌面环境。确保回答结构清晰,分点明确,帮助用户逐步做决策。</think>在进行CNN(卷积神经网络)和GCN(图卷积网络)分析时,选择TensorFlow CPU或GPU版本需综合考虑以下因素: ### 一、性能对比 1. **计算加速能力** - GPU版本通过CUDA核心和cuDNN库加速矩阵运算,对CNN的卷积层(如$y = W \ast X + b$)和GCN的邻接矩阵传播(如$H^{(l+1)} = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{(l)}W^{(l)})$)可实现10-100倍速度提升[^1] - CPU版本仅依赖多线程优化,适合小批量数据或简单模型 2. **内存管理** - GPU显存容量直接影响可处理的批量大小(如RTX 3090的24GB显存) - CPU版本依赖系统内存,更适合处理超大规模图数据(如亿级节点的GCN) ### 二、硬件需求 | 指标 | GPU版本要求 | CPU版本要求 | |-----------|-----------------------|-------------------| | 显卡 | NVIDIA CUDA兼容显卡(计算能力≥3.5) | 无特殊要求 | | 软件依赖 | CUDA Toolkit + cuDNN | 无 | | 最小内存 | 8GB系统内存 + 4GB显存 | 16GB系统内存 | ### 三、安装复杂度 1. **GPU版本安装步骤**: ```bash # 1. 验证显卡兼容性 nvidia-smi # 2. 安装CUDA 11.2和cuDNN 8.1 # 3. 安装TensorFlow pip install tensorflow-gpu ``` 2. **CPU版本安装**: ```bash pip install tensorflow-cpu ``` ### 四、应用场景建议 1. **优先选择GPU版本**: - 训练层数≥5的CNN(如ResNet-50) - 处理节点数>10万的图数据(GCN) - 需要实时推理的场景 2. **可选用CPU版本**: - 原型验证(如MNIST分类) - 嵌入式设备部署 - 缺少NVIDIA显卡的环境 ### 、分步选择指南 1. 检查硬件:运行`nvidia-smi`确认显卡型号和驱动版本[^2] 2. 评估任务规模: - CNN输入尺寸 > 224x224 选择GPU - GCN邻接矩阵密度 > 30% 建议GPU 3. 安装测试:通过以下代码验证设备识别 ```python import tensorflow as tf print("GPU可用设备:", tf.config.list_physical_devices('GPU')) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值