此文为阅读’代码随想录‘所写笔记。代码参考作者’程序员Carl‘(代码随想录)
参考链接:https://programmercarl.com/0027.%E7%A7%BB%E9%99%A4%E5%85%83%E7%B4%A0.html#%E6%80%9D%E8%B7%AF
时间复杂度定义
描述该算法的运行时间
对于O(n)的理解
代表的是一般情况下的时间复杂度,既不是最好,也不是最坏的情况。
同时,大O记录的是数据量级非常大的情况下所表现出的时间复杂度,这个数据量也就是常数项系数已经不起决定性作用的数据量。
是不是时间复杂度越低越好
不是时间复杂越低的越好,因为简化后的时间复杂度往往忽略了常数项。
真实比较的时候要考虑数据规模,如果数据规模很小甚至可以用O(n^2)的算法比O(n)的更合适,例如下图所示。
一般情况下的时间复杂度(不考虑常数)
O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)(立方阶) < O(2^n) (指数阶)
复杂表达式的化简
O(2*n^2 + 10*n + 1000)
O(2*n^2 + 10*n)
O(n^2 + n)
O(n^2)
O(logn)中的log是以什么为底?
以2为底n的对数 = 以2为底10的对数 * 以10为底n的对数
根据这条性质,都可以向前约出一个常数项,然后忽略常数项。