【书籍阅读】《代码随想录》——时间复杂度

此文为阅读’代码随想录‘所写笔记。代码参考作者’程序员Carl‘(代码随想录)
参考链接:https://programmercarl.com/0027.%E7%A7%BB%E9%99%A4%E5%85%83%E7%B4%A0.html#%E6%80%9D%E8%B7%AF

时间复杂度定义

描述该算法的运行时间

对于O(n)的理解

代表的是一般情况下的时间复杂度,既不是最好,也不是最坏的情况。
在这里插入图片描述
同时,大O记录的是数据量级非常大的情况下所表现出的时间复杂度,这个数据量也就是常数项系数已经不起决定性作用的数据量。

是不是时间复杂度越低越好

不是时间复杂越低的越好,因为简化后的时间复杂度往往忽略了常数项
真实比较的时候要考虑数据规模,如果数据规模很小甚至可以用O(n^2)的算法比O(n)的更合适,例如下图所示。
在这里插入图片描述

一般情况下的时间复杂度(不考虑常数)

O(1)常数阶 < O(logn)对数阶 < O(n)线性阶 < O(n^2)平方阶 < O(n^3)(立方阶) < O(2^n) (指数阶)

复杂表达式的化简

O(2*n^2 + 10*n + 1000)
O(2*n^2 + 10*n)
O(n^2 + n)
O(n^2)

O(logn)中的log是以什么为底?

以2为底n的对数 = 以2为底10的对数 * 以10为底n的对数

根据这条性质,都可以向前约出一个常数项,然后忽略常数项。

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

陈成不姓丞

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值