筛法求素数

筛法求素数

筛法

具体做法是:先把N个自然数按次序排列起来。1不是素数,也不是合数,要划去。

第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去。

这样一直做下去,就会把不超过N的全部合数都筛掉,留下的就是不超过N的全部质数。

又称:“埃拉托斯特尼筛”,简称“筛法”。

实现:

  1. 先将1去掉。

  2. 除去2的倍数

  3. 除去3的倍数

    。。。。。。

除去的方法就是,从 i i i 的第二倍开始,每次 $ j+=i$ ,遍历它的倍数。

注意点:

  • 如果 N N N是合数,则它有一个因子 d d d满足$ 1<d≤\sqrt{N}$ ,所以 i i i 的范围小于 N \sqrt{N} N

初始化:(打算数组从1开始记)

void INIT()
{
	memset(is_prime,1,sizeof(is_prime));
	is_prime[0]=0; is_prime[1]=0;
}

只是要素数表:

void get_prime()
{
	INIT();
	for(int i=2;i<=(int)sqrt(MAXN);++i) //有时要开long 
	{
		if(is_prime[i])
			for(int j=i*2;j<=MAXN;j+=i)
				is_prime[j]=0;
	}
	return ;
}

求得所有的素数:

int get_prime()
{
	INIT();int tot=0;//tot写在这,刚好就作返回值回去
	for(int i=2;i<=(int)sqrt(MAXN);++i)
	{
		if(is_prime[i])
		{
			prime[++tot] = i;
			for(int j=i*2;j<=MAXN;j+=i)
				is_prime[j] = 0;
		}	
	}
	return tot;
}
int main()
{
	int n=get_prime();
	for(int i=1;i<n;++i)
		printf("%d\n",prime[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值