使用crf++工具进行分词训练

本文详细介绍了如何使用crf++工具对中文语料进行分词训练。首先,将语料转化为CRF++所需的train.txt和test.txt格式,接着设定特征模板并进行训练,生成model文件。然后使用该模型对test文本进行预测,最后通过对比评估预测结果的准确率、精确率和召回率。
摘要由CSDN通过智能技术生成

1.将语料处理成CRF++工具要求的格式

迈      B
向      E
充      B
满      E
希      B
望      E
的      S
新      S
世      B
纪      E
  • test.txt格式
    (不是一句话一句话的语料直接放进去,要处理成类似训练语料的格式。)
共      B
同      B
创      B
造      B
美      B
好      B
的      B
新      B
世      B
纪      B
# Unigram template 模板
# unigram-features一元特征  
U00:%x[-2,0]  
U01:%x[-1,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值