判定一个图是否为二分图
从其中一个定点开始,将跟它邻接的点染成与其不同的颜色,最后如果邻接的点有相同颜色,则说明不是二分图,每次用bfs或者bfs遍历即可。
dfs模板
bool dfs(int u,int c){
color[u]=c;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(color[v]==c) return false;
if(color[v]==0&&!dfs(v,-c)) return false;
}
return true;
}
bfs模板
queue<int>q;
bool bfs(int u,int c){
q.push(u);
color[u]=c;
while(!q.empty()){
int v=q.front();
q.pop();
for(int i=0;i<G[v].size();i++){
int k=G[u][i];
if(color[k]==c) return false;
if(color[k]==0){
q.push(k);
color[k]=-color[v];
}
}
}
return true;
}
给定一个n个点m条边的无向图,图中可能存在重边和自环。请你判断这个图是否是二分图。
第一行包含两个整数n和m。接下来m行,每行包含两个整数u和v,表示点u和点v之间存在一条边。如果给定图是二分图,则输出“Yes”,否则输出“No”。
数据范围:1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes
#include<bits/stdc++.h>
using namespace std;
const int maxn=1005;
vector<int>G[maxn];
int color[maxn]={0};
bool dfs(int u,int c){
color[u]=c;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(color[v]==c) return false;
if(color[v]==0&&!dfs(v,-c)) return false;
}
return true;
}
queue<int>q;
bool bfs(int u,int c){
q.push(u);
color[u]=c;
while(!q.empty()){
int v=q.front();
q.pop();
for(int i=0;i<G[v].size();i++){
int k=G[u][i];
if(color[k]==c) return false;
if(color[k]==0){
q.push(k);
color[k]=-color[v];
}
}
}
return true;
}
int main()
{
int n,m,x,y;
cin>>n>>m;
for(int i=0;i<m;i++){
cin>>x>>y;
G[x].push_back(y);
G[y].push_back(x);
}
for(int i=1;i<=n;i++){
if(color[i]==0){
if(!bfs(i,1)){
cout<<"NO"<<endl;
}
}
}
cout<<"YES"<<endl;
return 0;
}