二分图染色模板

判定一个图是否为二分图
从其中一个定点开始,将跟它邻接的点染成与其不同的颜色,最后如果邻接的点有相同颜色,则说明不是二分图,每次用bfs或者bfs遍历即可。
dfs模板

bool dfs(int u,int c){
    color[u]=c;
    for(int i=0;i<G[u].size();i++){
        int v=G[u][i];
        if(color[v]==c) return false;
        if(color[v]==0&&!dfs(v,-c)) return false;
    }
    return true;
}

bfs模板

queue<int>q;
bool bfs(int u,int c){
    q.push(u);
    color[u]=c;
    while(!q.empty()){
        int v=q.front();
        q.pop();
        for(int i=0;i<G[v].size();i++){
            int k=G[u][i];
            if(color[k]==c) return false;
            if(color[k]==0){
                q.push(k);
                color[k]=-color[v];
            }
        }
    }
    return true;
}

给定一个n个点m条边的无向图,图中可能存在重边和自环。请你判断这个图是否是二分图。
第一行包含两个整数n和m。接下来m行,每行包含两个整数u和v,表示点u和点v之间存在一条边。如果给定图是二分图,则输出“Yes”,否则输出“No”。
数据范围:1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes

#include<bits/stdc++.h>
using namespace std;
const int maxn=1005;
vector<int>G[maxn];
int color[maxn]={0};
bool dfs(int u,int c){
    color[u]=c;
    for(int i=0;i<G[u].size();i++){
        int v=G[u][i];
        if(color[v]==c) return false;
        if(color[v]==0&&!dfs(v,-c)) return false;
    }
    return true;
}
queue<int>q;
bool bfs(int u,int c){
    q.push(u);
    color[u]=c;
    while(!q.empty()){
        int v=q.front();
        q.pop();
        for(int i=0;i<G[v].size();i++){
            int k=G[u][i];
            if(color[k]==c) return false;
            if(color[k]==0){
                q.push(k);
                color[k]=-color[v];
            }
        }
    }
    return true;
}
int main()
{
    int n,m,x,y;
    cin>>n>>m;
    for(int i=0;i<m;i++){
        cin>>x>>y;
        G[x].push_back(y);
        G[y].push_back(x);
    }
    for(int i=1;i<=n;i++){
        if(color[i]==0){
            if(!bfs(i,1)){
                cout<<"NO"<<endl;
            }
        }
    }
    cout<<"YES"<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值