PAT 1030 完美数列 python (无超时)

该博客介绍了PAT 1030 完美数列的问题,探讨了如何从给定的正整数中选择尽可能多的数构成一个完美数列,避免超时的算法优化,并分享了作者从Python代码超时到最终解决的过程。
摘要由CSDN通过智能技术生成

1030 完美数列(25)(25 分)

给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列。

现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列。

输入格式:

输入第一行给出两个正整数N和p,其中N(<= 105)是输入的正整数的个数,p(<= 109)是给定的参数。第二行给出N个正整数,每个数不超过109

输出格式:

在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。

输入样例:

10 8
2 3 20 4 5 1 6 7 8 9

输出样例:

8

作者: CAO, Peng
单位: PAT联盟
时间限制: 300ms
内存限制: 64MB
代码长度限制: 16KB

问题分析:
本题最初使用的循环嵌套,会出现运行超时
改进后对完美数列长度进行判断,过滤掉部分循环
同时,多次转制会造成运算超时,所以将转制放在最初input的位置

原代码:

x = input().split()
n = input().split()
n = sorted(map(int, n))
rst = [1]
for i in range(int(x[0])):
    for j 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值