Caputo 分数阶一维问题基于 L2-1σ逼近的快速差分方法(附Matlab源代码)

Caputo 分数阶一维问题基于 L2-1σ逼近的快速差分方法

Caputo 分数阶一维问题基于 L2-1 σ _\sigma σ 逼近的空间二阶方法(附Matlab程序)

考虑如下时间分数阶慢扩散方程初边值问题
{ 0 C D t α u ( x , t ) = u x x ( x , t ) + f ( x , t ) , x ∈ ( 0 , L ) , t ∈ ( 0 , T ] u ( x , 0 ) = φ ( x ) , x ∈ ( 0 , L ) u ( 0 , t ) = μ ( t ) , u ( L , t ) = ν ( t ) , t ∈ [ 0 , T ] \left\{\begin{array}{l} { }_{0}^{C} D_{t}^{\alpha} u(x, t)=u_{x x}(x, t)+f(x, t), \quad x \in(0, L), t \in(0, T] \\ u(x, 0)=\varphi(x), \quad x \in(0, L) \\ u(0, t)=\mu(t), \quad u(L, t)=\nu(t), \quad t \in[0, T] \end{array}\right. 0CDtαu(x,t)=uxx(x,t)+f(x,t),x(0,L),t(0,T]u(x,0)=φ(x),x(0,L)u(0,t)=μ(t),u(L,t)=ν(t),t[0,T]
其中 α ∈ ( 0 , 1 ) , f , φ , μ , ν \alpha \in(0,1), f, \varphi, \mu, \nu α(0,1),f,φ,μ,ν 为已知函数, 且 φ ( 0 ) = μ ( 0 ) , φ ( L ) = ν ( 0 ) \varphi(0)=\mu(0), \varphi(L)=\nu(0) φ(0)=μ(0),φ(L)=ν(0).

设解函数 u ∈ C ( 4 , 2 ) ( [ 0 , L ] × [ 0 , T ] ) u \in C^{(4,2)}([0, L] \times[0, T]) uC(4,2)([0,L]×[0,T]).

本文给出求解上述时间分数阶慢扩散方程初边值问题基于 L2-1 σ _\sigma σ 逼近的快速差分方法.

差分格式的建立


σ = 1 − α 2 , t n − 1 + σ = ( n − 1 + σ ) τ , f i n − 1 + σ = f ( x i , t n − 1 + σ ) \sigma=1-\frac{\alpha}{2}, \quad t_{n-1+\sigma}=(n-1+\sigma) \tau, \quad f_{i}^{n-1+\sigma}=f\left(x_{i}, t_{n-1+\sigma}\right) σ=12α,tn1+σ=(n1+σ)τ,fin1+σ=f(xi,tn1+σ)

在点 ( x i , t n − 1 + σ ) \left(x_{i}, t_{n-1+\sigma}\right) (xi,tn1+σ) 处考虑微分方程, 得到
0 C D t α u ( x i , t n − 1 + σ ) = u x x ( x i , t n − 1 + σ ) + f i n − 1 + σ , 1 ⩽ i ⩽ M − 1 , 1 ⩽ n ⩽ N . { }_{0}^{C} D_{t}^{\alpha} u\left(x_{i}, t_{n-1+\sigma}\right)=u_{x x}\left(x_{i}, t_{n-1+\sigma}\right)+f_{i}^{n-1+\sigma}, \quad 1 \leqslant i \leqslant M-1,1 \leqslant n \leqslant N . 0CDtαu(xi,tn1+σ)=uxx(xi,tn1+σ)+fin1+σ,1iM1,1nN.
对上式中时间分数阶导数应用参考文献中快速逼近的理论, 可得
{ 0 C D t α u ( x i , t n − 1 + σ ) = 1 Γ ( 1 − α ) ∑ l = 1 N exp ⁡ ω l F l , i n + d 0 ( 1 , α ) ( U i n − U i n − 1 ) + O ( τ 3 − α + ϵ ) , 1 ⩽ i ⩽ M − 1 , 1 ⩽ n ⩽ N , F l , i 1 = 0 , 1 ⩽ l ⩽ N exp ⁡ , 1 ⩽ i ⩽ M − 1 , F l , i n = e − s l τ F l , i n − 1 + A l ( U i n − 1 − U i n − 2 ) + B l ( U i n − U i n − 1 ) , 1 ⩽ l ⩽ N exp ⁡ , 1 ⩽ i ⩽ M − 1 , 2 ⩽ n ⩽ N . \left\{\begin{array}{c} { }_{0}^{C} D_{t}^{\alpha} u\left(x_{i}, t_{n-1+\sigma}\right)=\frac{1}{\Gamma(1-\alpha)} \sum_{l=1}^{N_{\exp }} \omega_{l} F_{l, i}^{n}+d_{0}^{(1, \alpha)}\left(U_{i}^{n}-U_{i}^{n-1}\right)+O\left(\tau^{3-\alpha}+\epsilon\right), \\ 1 \leqslant i \leqslant M-1, \quad 1 \leqslant n \leqslant N, \\ F_{l, i}^{1}=0, \quad 1 \leqslant l \leqslant N_{\exp }, \quad 1 \leqslant i \leqslant M-1, \\ F_{l, i}^{n}=\mathrm{e}^{-s_{l} \tau} F_{l, i}^{n-1}+A_{l}\left(U_{i}^{n-1}-U_{i}^{n-2}\right)+B_{l}\left(U_{i}^{n}-U_{i}^{n-1}\right), \\ 1 \leqslant l \leqslant N_{\exp }, \quad 1 \leqslant i \leqslant M-1, \quad 2 \leqslant n \leqslant N . \end{array}\right. 0CDtαu(xi,tn1+σ)=Γ(1α)1l=1NexpωlFl,in+d0(1,α)(UinUin1)+O(τ3α+ϵ),1iM1,1nN,Fl,i1=0,1lNexp,1iM1,Fl,in=eslτFl,in1+Al(Uin1Uin2)+Bl(UinUin1),1lNexp,1iM1,2nN.
对空间二阶导数应用二阶中心差商离散, 可得
u x x ( x i , t n − 1 + σ ) = σ u x x ( x i , t n ) + ( 1 − σ ) u x x ( x i , t n − 1 ) + O ( τ 2 ) = σ δ x 2 U i n + ( 1 − σ ) δ x 2 U i n − 1 + O ( h 2 ) + O ( τ 2 ) \begin{aligned} u_{x x}\left(x_{i}, t_{n-1+\sigma}\right) &=\sigma u_{x x}\left(x_{i}, t_{n}\right)+(1-\sigma) u_{x x}\left(x_{i}, t_{n-1}\right)+O\left(\tau^{2}\right) \\ &=\sigma \delta_{x}^{2} U_{i}^{n}+(1-\sigma) \delta_{x}^{2} U_{i}^{n-1}+O\left(h^{2}\right)+O\left(\tau^{2}\right) \end{aligned} uxx(xi,tn1+σ)=σuxx(xi,tn)+(1σ)uxx(xi,tn1)+O(τ2)=σδx2Uin+(1σ)δx2Uin1+O(h2)+O(τ2)
于是得到
{ 1 Γ ( 1 − α ) ∑ l = 1 N exp  ω l F l , i n + d 0 ( 1 , α ) ( U i n − U i n − 1 ) = σ δ x 2 U i n + ( 1 − σ ) δ x 2 U i n − 1 + f i n − 1 + σ + ( r 7 ) i n , F l , i 1 = 0 , 1 ⩽ i ⩽ M − 1 , 1 ⩽ n ⩽ N , F l , i n = e − s l τ F l , i n − 1 + A l ( U i n − 1 − U i n − 2 ) + B l ( U i n − U i n − 1 ) , 1 ⩽ l ⩽ N exp ⁡ , 1 ⩽ i ⩽ M − 1 , 2 ⩽ n ⩽ N , \left\{\begin{array}{l} \frac{1}{\Gamma(1-\alpha)} \sum_{l=1}^{N_{\text {exp }}} \omega_{l} F_{l, i}^{n}+d_{0}^{(1, \alpha)}\left(U_{i}^{n}-U_{i}^{n-1}\right)=\sigma \delta_{x}^{2} U_{i}^{n}+(1-\sigma) \delta_{x}^{2} U_{i}^{n-1}+f_{i}^{n-1+\sigma}+\left(r_{7}\right)_{i}^{n}, \\ F_{l, i}^{1}=0, \quad 1 \leqslant i \leqslant M-1, \quad 1 \leqslant n \leqslant N, \\ F_{l, i}^{n}=\mathrm{e}^{-s_{l} \tau} F_{l, i}^{n-1}+A_{l}\left(U_{i}^{n-1}-U_{i}^{n-2}\right)+B_{l}\left(U_{i}^{n}-U_{i}^{n-1}\right), \\ 1 \leqslant l \leqslant N_{\exp }, \quad 1 \leqslant i \leqslant M-1, \quad 2 \leqslant n \leqslant N, \end{array}\right. Γ(1α)1l=1Nexp ωlFl,in+d0(1,α)(UinUin1)=σδx2Uin+(1σ)δx2Uin1+fin1+σ+(r7)in,Fl,i1=0,1iM1,1nN,Fl,in=eslτFl,in1+Al(Uin1Uin2)+Bl(UinUin1),1lNexp,1iM1,2nN,
且存在正常数 c 7 c_{7} c7 使得
∣ ( r 7 ) i n ∣ ⩽ c 7 ( τ 2 + h 2 + ϵ ) , 1 ⩽ i ⩽ M − 1 , 1 ⩽ n ⩽ N . \left|\left(r_{7}\right)_{i}^{n}\right| \leqslant c_{7}\left(\tau^{2}+h^{2}+\epsilon\right), \quad 1 \leqslant i \leqslant M-1,1 \leqslant n \leqslant N . (r7)inc7(τ2+h2+ϵ),1iM1,1nN.
消去中间变量 { F l , i n } \left\{F_{l, i}^{n}\right\} {Fl,in} 可得
∑ k = 0 n − 1 d k ( n , α ) ( U i n − k − U i n − k − 1 ) = σ δ x 2 U i n + ( 1 − σ ) δ x 2 U i n − 1 + f i n − 1 + σ + ( r 7 ) i n 1 ⩽ i ⩽ M − 1 , 1 ⩽ n ⩽ N \begin{aligned} \sum_{k=0}^{n-1} d_{k}^{(n, \alpha)}\left(U_{i}^{n-k}-U_{i}^{n-k-1}\right) &=\sigma \delta_{x}^{2} U_{i}^{n}+(1-\sigma) \delta_{x}^{2} U_{i}^{n-1}+f_{i}^{n-1+\sigma}+\left(r_{7}\right)_{i}^{n} \\ 1 & \leqslant i \leqslant M-1,1 \leqslant n \leqslant N \end{aligned} k=0n1dk(n,α)(UinkUink1)1=σδx2Uin+(1σ)δx2Uin1+fin1+σ+(r7)iniM1,1nN
注意到初边值条件, 有
{ U i 0 = φ ( x i ) , 1 ⩽ i ⩽ M − 1 , U 0 n = μ ( t n ) , U M n = ν ( t n ) , 0 ⩽ n ⩽ N \begin{cases}U_{i}^{0}=\varphi\left(x_{i}\right), & 1 \leqslant i \leqslant M-1, \\ U_{0}^{n}=\mu\left(t_{n}\right), & U_{M}^{n}=\nu\left(t_{n}\right), \quad 0 \leqslant n \leqslant N\end{cases} {Ui0=φ(xi),U0n=μ(tn),1iM1,UMn=ν(tn),0nN

在上式中略去小量项 ( r 7 ) i n \left(r_{7}\right)_{i}^{n} (r7)in, 并用数值解 u i n u_{i}^{n} uin 代替精确解 U i n U_{i}^{n} Uin, 可得求解问题的如下差分格式:
{ 1 Γ ( 1 − α ) ∑ l = 1 N exp ⁡ ω l F l , i n + d 0 ( 1 , α ) ( u i n − u i n − 1 ) = σ δ x 2 u i n + ( 1 − σ ) δ x 2 u i n − 1 + f i n − 1 + σ , F l , i 1 = 0 , 1 ⩽ l ⩽ N exp ⁡ , 1 ⩽ i ⩽ M − 1 , F l , i n = e − s l τ F l , i n − 1 + A l ( u i n − 1 − u i n − 2 ) + B l ( u i n − u i n − 1 ) , 1 ⩽ l ⩽ N exp ⁡ , 1 ⩽ i ⩽ M − 1 , 2 ⩽ n ⩽ N , u i 0 = φ ( x i ) , 1 ⩽ i ⩽ M − 1 , u 0 n = μ ( t n ) , u M n = ν ( t n ) , 0 ⩽ n ⩽ N . \left\{\begin{array}{l} \frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{\exp }} \omega_{l} F_{l, i}^{n}+d_{0}^{(1, \alpha)}\left(u_{i}^{n}-u_{i}^{n-1}\right)=\sigma \delta_{x}^{2} u_{i}^{n}+(1-\sigma) \delta_{x}^{2} u_{i}^{n-1}+f_{i}^{n-1+\sigma}, \\ F_{l, i}^{1}=0, \quad 1 \leqslant l \leqslant N_{\exp }, 1 \leqslant i \leqslant M-1, \\ F_{l, i}^{n}=\mathrm{e}^{-s_{l} \tau} F_{l, i}^{n-1}+A_{l}\left(u_{i}^{n-1}-u_{i}^{n-2}\right)+B_{l}\left(u_{i}^{n}-u_{i}^{n-1}\right), \\ \quad 1 \leqslant l \leqslant N_{\exp }, 1 \leqslant i \leqslant M-1,2 \leqslant n \leqslant N, \\ u_{i}^{0}=\varphi\left(x_{i}\right), \quad 1 \leqslant i \leqslant M-1, \\ u_{0}^{n}=\mu\left(t_{n}\right), \quad u_{M}^{n}=\nu\left(t_{n}\right), \quad 0 \leqslant n \leqslant N . \end{array}\right. Γ(1α)1l=1NexpωlFl,in+d0(1,α)(uinuin1)=σδx2uin+(1σ)δx2uin1+fin1+σ,Fl,i1=0,1lNexp,1iM1,Fl,in=eslτFl,in1+Al(uin1uin2)+Bl(uinuin1),1lNexp,1iM1,2nN,ui0=φ(xi),1iM1,u0n=μ(tn),uMn=ν(tn),0nN.
其中
d 0 ( 1 , α ) = σ 1 − α τ − α Γ ( 2 − α ) d_{0}^{(1, \alpha)}=\frac{\sigma^{1-\alpha} \tau^{-\alpha}}{\Gamma(2-\alpha)} d0(1,α)=Γ(2α)σ1ατα

A l = ∫ 0 1 ( 3 2 − ξ ) e − s l ( σ + 1 − ξ ) τ d ξ , B l = ∫ 0 1 ( ξ − 1 2 ) e − s l ( σ + 1 − ξ ) τ d ξ A_{l}=\int_{0}^{1}\left(\frac{3}{2}-\xi\right) \mathrm{e}^{-s_{l}(\sigma+1-\xi) \tau} \mathrm{d} \xi, \quad B_{l}=\int_{0}^{1}\left(\xi-\frac{1}{2}\right) \mathrm{e}^{-s_{l}(\sigma+1-\xi) \tau} \mathrm{d} \xi Al=01(23ξ)esl(σ+1ξ)τdξ,Bl=01(ξ21)esl(σ+1ξ)τdξ

分数阶微分方程数值算例

数值算例

考虑问题:
0 C D t α u ( x , t ) = ∂ 2 u ∂ x 2 ( x , t ) + f ( x , t ) , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , 1 ) , { }_{0}^{C} D_{t}^{\alpha} u(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)+f(x, t),(x, t) \in(0,1) \times(0,1), 0CDtαu(x,t)=x22u(x,t)+f(x,t),(x,t)(0,1)×(0,1),

其中 0 < α < 1 0<\alpha<1 0<α<1, 右端源项 f ( x , t ) f(x, t) f(x,t) 和相应的初边值条件由真解 u ( x , t ) = sin ⁡ ( x ) t 2 u(x, t)=\sin (x) t^{2} u(x,t)=sin(x)t2 确定.

源项和初边值条件

由真解 u ( x , t ) = sin ⁡ ( x ) t 2 . u(x, t)=\sin (x) t^{2}. u(x,t)=sin(x)t2.
则有
{ u x = t 2 cos ⁡ x u x x = − t 2 sin ⁡ x { u t = 2 t sin ⁡ x u t t = 2 sin ⁡ x . \left\{\begin{array}{l}u_{x}=t^{2} \cos x \\ u_{x x}=-t^{2} \sin x\end{array} \quad\left\{\begin{array}{l}u_{t}=2 t \sin x \\ u_{t t}=2 \sin x .\end{array}\right.\right. {ux=t2cosxuxx=t2sinx{ut=2tsinxutt=2sinx.

将真解对应部分带入微分方程从而反解右端源项 f ( x , t ) f(x, t) f(x,t)

0 c D t α u ( x , t ) = 1 Γ ( 1 − α ) ∫ 0 t 2 s sin ⁡ x ( t − s ) α d s = − 2 sin ⁡ x Γ ( 1 − α ) ∫ 0 t ( t − s − t ) ( t − s ) − α d s = − 2 sin ⁡ x Γ ( 1 − α ) ∫ 0 t [ ( t − s ) 1 − α − t ( t − s ) − α ] d s = − 2 sin ⁡ x Γ ( 1 − α ) [ ∫ 0 t − ( t − s ) 1 − α d ( t − s ) + ∫ 0 1 t ( t − s ) − α d ( t − s ) ] = − 2 sin ⁡ x Γ ( 1 − α ) [ 1 2 − α ( t − s ) 2 − α ∣ t 0 + t 1 − α ( t − s ) 1 − α ∣ 0 t ] = − 2 sin ⁡ x Γ ( 1 − α ) [ t 2 − α 2 − α + t 1 − α ⋅ ( − t 1 − α ) ] = − 2 sin ⁡ x Γ ( 1 − α ) ⋅ − t 2 − α ( 2 − α ) ( 1 − α ) = 2 sin ⁡ x Γ ( 3 − α ) t 2 − α \begin{aligned} { }_{0}^{c} D_{t}^{\alpha} u(x, t)&=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{2s \sin x}{(t-s)^{\alpha}} d s\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)} \int_{0}^{t}(t-s-t)(t-s)^{-\alpha} d s\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)} \int_{0}^{t}\left[(t-s)^{1-\alpha}-t(t-s)^{-\alpha}\right] d s\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)}\left[\int_{0}^{t}-(t-s)^{1-\alpha} d(t-s)+\int_{0}^{1} t(t-s)^{-\alpha} d(t-s)\right]\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)}\left[\left.\frac{1}{2-\alpha}(t-s)^{2-\alpha}\right|_{t} ^{0}+\left.\frac{t}{1-\alpha}(t-s)^{1-\alpha}\right|_{0} ^{t}\right]\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)}\left[\frac{t^{2-\alpha}}{2-\alpha}+\frac{t}{1-\alpha} \cdot\left(-t^{1-\alpha}\right)\right]\\ &=\frac{-2 \sin x}{\Gamma(1-\alpha)} \cdot \frac{-t^{2-\alpha}}{(2-\alpha)(1-\alpha)}\\ &=\frac{2 \sin x}{\Gamma(3-\alpha)} t^{2-\alpha} \end{aligned} 0cDtαu(x,t)=Γ(1α)10t(ts)α2ssinxds=Γ(1α)2sinx0t(tst)(ts)αds=Γ(1α)2sinx0t[(ts)1αt(ts)α]ds=Γ(1α)2sinx[0t(ts)1αd(ts)+01t(ts)αd(ts)]=Γ(1α)2sinx[2α1(ts)2α t0+1αt(ts)1α 0t]=Γ(1α)2sinx[2αt2α+1αt(t1α)]=Γ(1α)2sinx(2α)(1α)t2α=Γ(3α)2sinxt2α

由于 0 C D t α u ( x , t ) = ∂ 2 u ∂ x 2 ( x , t ) + f ( x , t ) { }_{0}^{C} D_{t}^{\alpha} u(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)+f(x, t) 0CDtαu(x,t)=x22u(x,t)+f(x,t)
于是 f ( x , t ) = 0 C D t α u ( x , t ) − ∂ 2 u ∂ x 2 ( x , t ) = 2 sin ⁡ x Γ ( 3 − α ) t 2 − α + t 2 sin ⁡ x . \begin{aligned} f(x, t)&={ }_{0}^{C} D_{t}^{\alpha} u(x, t)-\frac{\partial^{2} u}{\partial x^{2}}(x, t)\\ &=\frac{2 \sin x}{\Gamma(3-\alpha)} t^{2-\alpha}+t^{2} \sin x. \end{aligned} f(x,t)=0CDtαu(x,t)x22u(x,t)=Γ(3α)2sinxt2α+t2sinx.

综上所述, 完整的数值算例为:

{ 0 C D t α u ( x , t ) = u x x ( x , t ) + 2 sin ⁡ x Γ ( 3 − α ) t 2 − α + t 2 sin ⁡ x , x ∈ ( 0 , L ) , t ∈ ( 0 , T ] u ( x , 0 ) = 0 , x ∈ ( 0 , L ) u ( 0 , t ) = 0 , u ( L , t ) = t 2 sin ⁡ L , t ∈ [ 0 , T ] \left\{\begin{array}{l} { }_{0}^{C} D_{t}^{\alpha} u(x, t)=u_{x x}(x, t)+\frac{2 \sin x}{\Gamma(3-\alpha)} t^{2-\alpha}+t^{2} \sin x, \quad x \in(0, L), t \in(0, T] \\ u(x, 0)=0, \quad x \in(0, L) \\ u(0, t)=0, \quad u(L, t)=t^2\sin L, \quad t \in[0, T] \end{array}\right. 0CDtαu(x,t)=uxx(x,t)+Γ(3α)2sinxt2α+t2sinx,x(0,L),t(0,T]u(x,0)=0,x(0,L)u(0,t)=0,u(L,t)=t2sinL,t[0,T]

代数系统

由于 F l , i n = e − s l τ F l , i n − 1 + A l ( u i n − 1 − u i n − 2 ) + B l ( u i n − u i n − 1 ) F_{l, i}^{n}=\mathrm{e}^{-s_{l} \tau} F_{l, i}^{n-1}+A_{l}\left(u_{i}^{n-1}-u_{i}^{n-2}\right)+B_{l}\left(u_{i}^{n}-u_{i}^{n-1}\right) Fl,in=eslτFl,in1+Al(uin1uin2)+Bl(uinuin1) 中含有 u i n u_{i}^{n} uin, 故考虑将 F l , i n F_{l, i}^{n} Fl,in 拆成
F l , i n = F ^ l , i n + B l ( u i n − u i n − 1 ) F_{l, i}^{n}=\hat{F}_{l,i}^{n}+B_{l}\left(u_{i}^{n}-u_{i}^{n-1}\right) Fl,in=F^l,in+Bl(uinuin1)
其中 F ^ l , i n = e − s l τ F l , i n − 1 + A l ( u i n − 1 − u i n − 2 ) \hat{F}_{l,i}^{n}=\mathrm{e}^{-s_{l} \tau} F_{l, i}^{n-1}+A_{l}\left(u_{i}^{n-1}-u_{i}^{n-2}\right) F^l,in=eslτFl,in1+Al(uin1uin2)
根据差分格式:
1 Γ ( 1 − α ) ∑ l = 1 N exp ⁡ ω l F l , i n + d 0 ( 1 , α ) ( u i n − u i n − 1 ) = σ δ x 2 u i n + ( 1 − σ ) δ x 2 u i n − 1 + f i n − 1 + σ \frac{1}{\Gamma(1-\alpha)} \sum_{l=1}^{N_{\exp }} \omega_{l} F_{l, i}^{n}+d_{0}^{(1, \alpha)}\left(u_{i}^{n}-u_{i}^{n-1}\right)=\sigma \delta_{x}^{2} u_{i}^{n}+(1-\sigma) \delta_{x}^{2} u_{i}^{n-1}+f_{i}^{n-1+\sigma} Γ(1α)1l=1NexpωlFl,in+d0(1,α)(uinuin1)=σδx2uin+(1σ)δx2uin1+fin1+σ
于是有
1 Γ ( 1 − α ) ∑ i = 1 N exp  w i F ^ l , i n + 1 Γ ( 1 − α ) ∑ i = 1 N e x p ω i B l ( u i n − u i n − 1 ) + d 0 ( 1 , α ) ( u i n − u i n − 1 ) \frac{1}{\Gamma(1-\alpha)} \sum_{i=1}^{N_{\text {exp }}} w_{i} \hat{F}_{l, i}^{n}+\frac{1}{\Gamma(1-\alpha)} \sum_{i=1}^{N_{exp}} \omega_{i} B_{l}\left(u_{i}^{n}-u_{i}^{n-1}\right)+d_{0}^{(1, \alpha)}\left(u_{i}^{n}-u_{i}^{n-1}\right) Γ(1α)1i=1Nexp wiF^l,in+Γ(1α)1i=1NexpωiBl(uinuin1)+d0(1,α)(uinuin1)
= σ δ x 2 u i n + ( 1 − σ ) δ x 2 u i n − 1 + f i n − 1 + σ =\sigma \delta_{x}^{2} u_{i}^{n}+(1-\sigma) \delta_{x}^{2} u_{i}^{n-1}+f_{i}^{n-1+\sigma} =σδx2uin+(1σ)δx2uin1+fin1+σ

得到如下代数系统:
A ( u 1 n u 2 n ⋮ u M − 2 n u M − 1 n ) = b \mathbf{A}\left(\begin{array}{c}u_{1}^{n} \\ u_{2}^{n} \\ \vdots \\ u_{M-2}^{n} \\ u_{M-1}^{n}\end{array}\right)=\mathbf{b} A u1nu2nuM2nuM1n =b
其中
A = ( 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) + 2 σ h 2 − σ h 2 − σ h 2 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) + 2 σ h 2 − σ h 2 ⋱ ⋱ 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) + 2 σ h 2 − σ h 2 ) \mathbf{A}=\left(\begin{array}{cccc}\frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}+\frac{2 \sigma}{h^{2}}&-\frac{\sigma}{h^{2}} & & \\ -\frac{\sigma}{h^{2}} & \frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}+\frac{2 \sigma}{h^{2}}&-\frac{\sigma}{h^{2}} & \\ & \ddots & \ddots & \\ & & \frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}+\frac{2 \sigma}{h^{2}}&-\frac{\sigma}{h^{2}}\end{array}\right) A= Γ(1α)1l=1NexpωlBl+d0(1,α)+h22σh2σh2σΓ(1α)1l=1NexpωlBl+d0(1,α)+h22σh2σΓ(1α)1l=1NexpωlBl+d0(1,α)+h22σh2σ

b = ( 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) − 2 ( 1 − σ ) h 2 1 − σ h 2 1 − σ h 2 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) − 2 ( 1 − σ ) h 2 1 − σ h 2 ⋱ ⋱ 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l B l + d 0 ( 1 , α ) − 2 ( 1 − σ ) h 2 1 − σ h 2 ) ( u 1 n − 1 u 2 n − 1 ⋮ u M − 2 n − 1 u M − 1 n − 1 ) + 1 − σ h 2 ⋅ ( u 0 n − 1 0 ⋮ 0 u M − 1 n ) + σ h 2 ⋅ ( u 0 n 0 ⋮ 0 u M n ) + a ^ 0 ( α ) Γ ( 1 − α ) ⋅ ( u 1 n − 1 u 2 n − 1 ⋮ u M − 2 n − 1 u M − 1 n − 1 ) − 1 Γ ( 1 − α ) ∑ l = 1 N e x p ω l F ^ l , i n + f i n − 1 + σ \begin{aligned} \mathbf{b}&=\left(\begin{array}{cccc}\frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}-\frac{2 (1-\sigma)}{h^{2}}&\frac{1-\sigma}{h^{2}} & & \\ \frac{1-\sigma}{h^{2}} & \frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}-\frac{2 (1-\sigma)}{h^{2}}&\frac{1-\sigma}{h^{2}} & \\ & \ddots & \ddots & \\ & & \frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} B_{l}+d_{0}^{(1, \alpha)}-\frac{2 (1-\sigma)}{h^{2}}&\frac{1-\sigma}{h^{2}}\end{array}\right)\left(\begin{array}{c}u_{1}^{n-1} \\ u_{2}^{n-1} \\ \vdots \\ u_{M-2}^{n-1} \\ u_{M-1}^{n-1}\end{array}\right)\\ &+\frac{1-\sigma}{h^{2}} \cdot\left(\begin{array}{c}u_{0}^{n-1} \\ 0 \\ \vdots \\ 0 \\ u_{M-1}^{n}\end{array}\right)+\frac{\sigma}{h^{2}} \cdot\left(\begin{array}{c}u_{0}^{n} \\ 0 \\ \vdots \\ 0 \\ u_{M}^{n}\end{array}\right)+\frac{\hat{a}_0^{(\alpha)}}{\Gamma(1-\alpha)} \cdot\left(\begin{array}{c}u_{1}^{n-1} \\ u_{2}^{n-1} \\ \vdots \\ u_{M-2}^{n-1}\\ u_{M-1}^{n-1}\end{array}\right)-\frac{1}{\Gamma(1-\alpha)} \sum\limits_{l=1}^{N_{exp}} \omega_{l} \hat{F}_{l, i}^{n}+f_{i}^{n-1+\sigma} \end{aligned} b= Γ(1α)1l=1NexpωlBl+d0(1,α)h22(1σ)h21σh21σΓ(1α)1l=1NexpωlBl+d0(1,α)h22(1σ)h21σΓ(1α)1l=1NexpωlBl+d0(1,α)h22(1σ)h21σ u1n1u2n1uM2n1uM1n1 +h21σ u0n100uM1n +h2σ u0n00uMn +Γ(1α)a^0(α) u1n1u2n1uM2n1uM1n1 Γ(1α)1l=1NexpωlF^l,in+fin1+σ

相关积分计算:
A l = ∫ 0 1 ( 3 2 − ξ ) e − s l ( σ + 1 − ξ ) τ d ξ = ∫ 0 1 3 2 e − s l ( σ + 1 − ξ ) τ d ξ − ∫ 0 1 ξ e − s l ( σ + 1 − ξ ) τ d ξ = 3 2 s l τ [ e − s l τ σ − e − s l τ ( σ + 1 ) ] − e − s l ( σ + 1 ) τ ⋅ 1 s l τ [ e s l τ − 1 s τ τ e s l τ + 1 s l τ ] = 1 s l τ e − s l τ σ [ 1 2 + 1 s l τ − ( 1 s l τ + 3 2 ) e − s l τ ] \begin{aligned}A_{l}&=\int_{0}^{1}\left(\frac{3}{2}-\xi\right) \mathrm{e}^{-s_{l}(\sigma+1-\xi) \tau} \mathrm{d} \xi\\ &=\int_{0}^{1} \frac{3}{2} e^{-s_{l}(\sigma+1-\xi) \tau} d \xi-\int_{0}^{1} \xi e^{-s_{l}(\sigma+1-\xi) \tau} d \xi\\ &=\frac{3}{2 s_{l} \tau}\left[e^{-s_{l} \tau \sigma}-e^{-s_{l} \tau(\sigma+1)}\right]-e^{-s_{l}\left(\sigma+1\right) \tau} \cdot \frac{1}{s_{l} \tau}\left[e^{s_{l} \tau}-\frac{1}{s_{\tau} \tau} e^{s_{l} \tau}+\frac{1}{s_{l} \tau}\right]\\ &=\frac{1}{s_{l} \tau} e^{-s_{l} \tau \sigma}\left[\frac{1}{2}+\frac{1}{s_{l} \tau}-\left(\frac{1}{s_{l} \tau}+\frac{3}{2}\right) e^{-s_{l} \tau}\right] \end{aligned} Al=01(23ξ)esl(σ+1ξ)τdξ=0123esl(σ+1ξ)τdξ01ξesl(σ+1ξ)τdξ=2slτ3[eslτσeslτ(σ+1)]esl(σ+1)τslτ1[eslτsττ1eslτ+slτ1]=slτ1eslτσ[21+slτ1(slτ1+23)eslτ]
B l = ∫ 0 1 ( ξ − 1 2 ) e − s l ( σ + 1 − ξ ) τ d ξ = ∫ 0 1 − 1 2 e − s l ( σ + 1 − ξ ) τ d ξ + ∫ 0 1 ξ e − s l ( σ + 1 − ξ ) τ d ξ = − 1 2 s l τ [ e − s l τ σ − e − s l τ ( σ + 1 ) ] + e − s l ( σ + 1 ) τ ⋅ 1 s l τ [ e s l τ − 1 s τ τ e s l τ + 1 s l τ ] = 1 s l τ e − s l τ σ [ 1 2 − 1 s l τ + ( 1 s l τ + 1 2 ) e − s l τ ] \begin{aligned} B_{l}&=\int_{0}^{1}\left(\xi-\frac{1}{2}\right) \mathrm{e}^{-s_{l}(\sigma+1-\xi) \tau} \mathrm{d} \xi\\ &=\int_{0}^{1} -\frac{1}{2} e^{-s_{l}(\sigma+1-\xi) \tau} d \xi+\int_{0}^{1} \xi e^{-s_{l}(\sigma+1-\xi) \tau} d \xi\\ &=-\frac{1}{2 s_{l} \tau}\left[e^{-s_{l} \tau \sigma}-e^{-s_{l} \tau(\sigma+1)}\right]+e^{-s_{l}\left(\sigma+1\right) \tau} \cdot \frac{1}{s_{l} \tau}\left[e^{s_{l} \tau}-\frac{1}{s_{\tau} \tau} e^{s_{l} \tau}+\frac{1}{s_{l} \tau}\right]\\ &=\frac{1}{s_{l} \tau} e^{-s_{l} \tau \sigma}\left[\frac{1}{2}-\frac{1}{s_{l} \tau}+\left(\frac{1}{s_{l} \tau}+\frac{1}{2}\right) e^{-s_{l} \tau}\right] \end{aligned} Bl=01(ξ21)esl(σ+1ξ)τdξ=0121esl(σ+1ξ)τdξ+01ξesl(σ+1ξ)τdξ=2slτ1[eslτσeslτ(σ+1)]+esl(σ+1)τslτ1[eslτsττ1eslτ+slτ1]=slτ1eslτσ[21slτ1+(slτ1+21)eslτ]

数值结果

时间方向参数选取:
FL2_1_sigma参数设置-时间方向-

时间方向数值结果:
FL2_1_sigma数值结果-时间方向-

空间方向参数选取:
FL2_1_sigma参数设置-空间方向-

空间方向数值结果:
FL2_1_sigma数值结果-空间方向-

程序运行时间:

时间步长为 0.000100 空间步长为 0.012500 时快速 L2-1 σ _\sigma σ 插值逼近历时 4.232766 秒.

误差Error =6.6569e-06

而相同的网格剖分及精度下, 传统的基于 L2-1 σ _\sigma σ 逼近需历时 166.610357 秒.

误差6.9756e-07

源代码

主程序:

clc,clear
tic
%% 初始化定解问题
alpha=0.2;
sigma=1-alpha/2;
epsilon=1e-8;
tau_hat=1e-6;
tau=1/10000;   T_a=0;      T_b=1;  
h=1/80;     L_a=0;      L_b=1;                
M=(L_b-L_a)/h;  
N=(T_b-T_a)/tau;       
x=L_a:h:L_b;        t=T_a:tau:T_b; 

u=zeros(M+1,N+1);          %   @u 初始化数值解
u(:,1)=f_ic(x,T_a,0,0);    %   定义初值条件
u(1,:)=f_bc(L_a,t,0,0);    %   定义左边界条件
u(M+1,:)=f_bc(L_b,t,0,0);  %   定义右边界条件

[xs,ws,nexp] = sumofexpappr2new(alpha,epsilon,tau_hat,T_b);
%% 两层格式(启动层)
n=2;
F_l=zeros(M-1,nexp);
% 创建代数系统
% 系数矩阵 Coefficient_Matrix_A
Coefficient_Matrix_A=toeplitz([d(0,1,alpha,sigma,tau)+2*sigma/h^2,-sigma/h^2,zeros(M-3,1)']);
% 右端 Right_Term_B
Right_Term_B=f_source(x(2:M),t(n-1)+sigma*tau,alpha)'...
    -1/gamma(1-alpha)*F_l*ws...
    +toeplitz([d(0,1,alpha,sigma,tau)-2*(1-sigma)/h^2,(1-sigma)/h^2,zeros(M-3,1)'])*u(2:M,n-1)...
    +(1-sigma)/h^2*[u(1,n-1);zeros(M-3,1);u(M+1,n-1)]...
    +sigma/h^2*[u(1,n);zeros(M-3,1);u(M+1,n)];
% 求解迭代系统(由0层求第1层的值)
u(2:M,n)=Coefficient_Matrix_A\Right_Term_B;
fprintf('进程:\t%d/%d\n',n,N+1)

%% 三层格式
% A_l=3./(2*xs*tau).*(exp(1).^(-xs*tau*sigma)-exp(1).^(-xs*tau*(sigma+1)))...
%     -exp(1).^(-xs*(sigma+1)*tau)./(xs*tau).*(exp(1.^(xs*tau)-1./(xs*tau).*exp(1).^(xs*tau)+1./(xs*tau)));
% B_l=-1./(2*xs*tau).*(exp(1).^(-xs*tau*sigma)-exp(1).^(-xs*tau*(sigma+1)))...
%     +exp(1).^(-xs*(sigma+1)*tau)./(xs*tau).*(exp(1.^(xs*tau)-1./(xs*tau).*exp(1).^(xs*tau)+1./(xs*tau)));
% 使用上述未化简的 A_l、B_l 会出现较大误差, 考虑是因为较大舍入误差造成
A_l=1./(xs*tau).*exp(1).^(-xs*tau*sigma).*(1/2+1./(xs*tau)-(1./(xs*tau)+3/2).*exp(1).^(-xs*tau));
B_l=1./(xs*tau).*exp(1).^(-xs*tau*sigma).*(1/2-1./(xs*tau)+(1./(xs*tau)+1/2).*exp(1).^(-xs*tau));
for n=3:N+1
    % 创建代数系统
    F_l=F_l*diag(exp(1).^(-xs*tau))+((u(2:M,n-1)-u(2:M,n-2)))*A_l';
    % 系数矩阵 Coefficient_Matrix_A
    Coefficient_Matrix_A=toeplitz([1/gamma(1-alpha)*B_l'*ws+d(0,1,alpha,sigma,tau)+2*sigma/h^2,-sigma/h^2,zeros(M-3,1)']);
    % 右端 Right_Term_B1
    Right_Term_B1=f_source(x(2:M),t(n-1)+sigma*tau,alpha)'...
        -1/gamma(1-alpha)*F_l*ws...
        +toeplitz([1/gamma(1-alpha)*B_l'*ws+d(0,1,alpha,sigma,tau)-2*(1-sigma)/h^2,(1-sigma)/h^2,zeros(M-3,1)'])*u(2:M,n-1)...
        +(1-sigma)/h^2*[u(1,n-1);zeros(M-3,1);u(M+1,n-1)]...
        +sigma/h^2*[u(1,n);zeros(M-3,1);u(M+1,n)];
    % 求解代数系统(由 k-2 层及第 k-1 层求第 k 层的值)
    u(2:M,n)=Coefficient_Matrix_A\Right_Term_B1;
    fprintf('进程:\t%d/%d\n',n,N+1)
end
% clc
fprintf('时间步长为 %f 空间步长为 %f 时快速 L2_1_sigma 插值逼近 %d\n',tau,h)
toc
%% 误差分析
U=zeros(size(u));
for m=1:M+1
    for n=1:N+1
        U(m,n)=u_exact(x(m),t(n),0,0);
    end
end
Error=max(max(abs(u-U)))

%% 绘图
figure
plot(t,u(7,:))
hold on
plot(t,U(7,:))
legend('数值解','精确解')

创作不易,此处仅展示了主程序代码部分, 绘图及误差分析等完整代码请查看专栏Matlab偏微分方程系列编程,感谢支持.

参考文献

孙志忠,高广花.分数阶微分方程的有限差分方法(第二版).北京:科学出版社,2021.


本人水平有限, 若有不妥之处, 恳请批评指正.

作者:图灵的猫

作者邮箱: turingscat@126.com

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值