全国大学生数学建模竞赛(CUMCM)历年试题速浏(查看超级方便)

本文提供了全国大学生数学建模竞赛(CUMCM)从2010年至2023年的历年试题简介,涵盖了各种实际问题,如能源、通信、生产管理、物流、环保等多个领域,旨在提升学生的数学应用能力和团队合作精神。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全国大学生数学建模竞赛(CUMCM)历年试题速浏

top_cn

全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养 创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。


【专栏推荐📖】: 全国大学生数学建模速浏与分类浅析全国大学生数学建模速浏与分类浅析 专栏

致力于为全国大学生数学建模竞赛(CUMCM)参赛者提供系统化的历年题目速览与分类解析。通过逐年逐题的结构化梳理,帮助读者快速掌握每道题目的核心考点、模型类型、算法框架及难点解析。专栏内容涵盖题目背景、领域分类、模型构建、算法实现及创新方向,旨在为建模新手提供入门指南,为资深参赛者提供深度参考。

点击对应标题即可实现赛题速览(超级方便),完整赛题及更多数学建模技巧分享见文章末尾🔚


年份A题B题C题D题E题
2010储油罐的变位识别与罐容表标定2010年上海世博会影响力的定量评估输油管的布置对学生宿舍设计方案的评价-
2011城市表层土壤重金属污染分析交巡警服务平台的设置与调度企业退休职工养老金制度的改革天然肠衣搭配问题-
2012葡萄酒的评价太阳能小屋的设计脑卒中发病环境因素分析及干预机器人避障问题-
2013车道被占用对城市道路通行能力的影响碎纸片的拼接复原古塔的变形公共自行车服务系统-
2014嫦娥三号软着陆轨道设计与控制策略创意平板折叠桌生猪养殖场的经营管理储药柜的设计-
2015太阳影子定位"互联网+"时代的出租车资源配置月上柳梢头众筹筑屋规划方案设计-
2016系泊系统的设计小区开放对道路通行的影响电池剩余放电时间预测风电场运行状况分析及优化-
2017CT系统参数标定及成像"拍照赚钱"的任务定价颜色与物质浓度辨识巡检线路的排班-
2018高温作业专用服装设计智能RGV的动态调度策略大型百货商场会员画像描绘汽车总装线的配置问题-
2019高压油管的压力控制"同心协力"策略研究机场的出租车问题空气质量数据的校准"薄利多销"分析
2020炉温曲线穿越沙漠中小微企业的信贷决策接触式轮廓仪的自动标注校园供水系统智能管理
2021"FAST"主动反射面的形状调节乙醇偶合制备C4烯烃生产企业原材料的订购与运输连铸切割的在线优化中药材的鉴别
2022波浪能最大输出功率设计无人机遂行编队飞行中的纯方位无源定位古代玻璃制品的成分分析与鉴别气象报文信息卫星通信传输小批量物料的生产安排
2023定日镜场的优化设计多波束测线问题蔬菜类商品的自动定价与补货决策圈养湖羊的空间利用率黄河水沙监测数据分析
2024"板凳龙"闹元宵生产过程中的决策问题农作物的种植策略反潜航空深弹命中概率问题交通流量管控

2024 年全国大学生数学建模竞赛(CUMCM)试题

2023 年全国大学生数学建模竞赛(CUMCM)试题

2022 年全国大学生数学建模竞赛(CUMCM)试题

2021 年全国大学生数学建模竞赛(CUMCM)试题

2020 年全国大学生数学建模竞赛(CUMCM)试题

2019 年全国大学生数学建模竞赛(CUMCM)试题

2018 年全国大学生数学建模竞赛(CUMCM)试题

2017 年全国大学生数学建模竞赛(CUMCM)试题

2016 年全国大学生数学建模竞赛(CUMCM)试题

2015 年全国大学生数学建模竞赛(CUMCM)试题

2014 年全国大学生数学建模竞赛(CUMCM)试题

2013 年全国大学生数学建模竞赛(CUMCM)试题

2012 年全国大学生数学建模竞赛(CUMCM)试题

2011 年全国大学生数学建模竞赛(CUMCM)试题

2010 年全国大学生数学建模竞赛(CUMCM)试题


推荐阅读

❤️整理不易, 若有收获, 麻烦点赞收藏, 感恩的心❤️

神经网络在自动驾驶中扮演着重要角色,它可以帮助车辆感知环境、做决策和控制行为。以下是一个简单的自动驾驶神经网络算法代码详解: ```python import numpy as np # 定义神经网络类 class NeuralNetwork: def __init__(self, input_size, hidden_size, output_size): # 初始化权重和偏置 self.W1 = np.random.randn(input_size, hidden_size) self.b1 = np.zeros((1, hidden_size)) self.W2 = np.random.randn(hidden_size, output_size) self.b2 = np.zeros((1, output_size)) def forward(self, X): # 前向传播计算输出 self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.a2 = self.sigmoid(self.z2) return self.a2 def backward(self, X, y, learning_rate): # 反向传播更新权重和偏置 m = X.shape[0] delta2 = self.a2 - y dW2 = (1/m) * np.dot(self.a1.T, delta2) db2 = (1/m) * np.sum(delta2, axis=0) delta1 = np.dot(delta2, self.W2.T) * (1 - np.power(self.a1, 2)) dW1 = (1/m) * np.dot(X.T, delta1) db1 = (1/m) * np.sum(delta1, axis=0) self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 def sigmoid(self, x): # sigmoid激活函数 return 1 / (1 + np.exp(-x)) # 样本输入和输出 X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) # 创建神经网络对象 nn = NeuralNetwork(2, 3, 1) # 训练神经网络 for i in range(10000): output = nn.forward(X) nn.backward(X, y, learning_rate=0.1) # 测试神经网络 test_input = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) predictions = nn.forward(test_input) print(predictions) ``` 这段代码实现了一个简单的多层感知器神经网络,用于解决XOR逻辑门问题。其中`NeuralNetwork`类定义了神经网络的结构和操作,`forward`方法用于前向传播计算输出,`backward`方法用于反向传播更新权重和偏置。最后通过训练和测试数据来验证神经网络的准确性。该代码可以作为自动驾驶神经网络算法的基础,根据具体问题进行进一步扩展和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图灵猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值