傅里叶谱方法-傅里叶谱方法求解基本偏微分方程(一维波动方程、 二维波动方程、一维非线性薛定谔方程)及其Matlab程序实现

本文介绍了傅里叶谱方法在求解一维和二维波动方程以及一维非线性薛定谔方程中的应用。通过Matlab程序演示,展示了如何利用这种方法模拟波的传播和演化,验证了理论预测与数值计算的一致性。
摘要由CSDN通过智能技术生成

3.2 傅里叶谱方法求解基本偏微分方程 (组)

3.2.1 一维波动方程

对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 ( − ∞ < x < ∞ ) (-\infty<x<\infty) (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.图灵的猫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值