《数学物理方程》期末复习(华工)

华南理工大学《数学物理方程》个人期末复习,感谢程老师的悉心教导。

本人复习根据作业习题摘抄关键知识点,不根据书本具体内容。发表至网上的目的是个人回顾,顺便还能共享一下,或许有一些帮助。若有错误,请谅解并指出(本人很少上号,可能不能及时看到并回复)。

一、方程的导出和定解问题的提法

  1. 偏微分方程的分类

阶:最高阶偏微商的阶数叫做该偏微分方程的阶

齐次:不 含u及其偏微商的项称为自由项;当自由项为零时,称方程为齐次方程;否则称 为非齐次方程。

线性:如果方程关于未知函数及其所有偏微商是线性的;否 则称为非线性的。

【题目】 是二阶线性非齐次方程

是二阶线性齐次方程

  1. 用高数常微分方法求微分方程通解

【题目】 先对y积分再对x积分

分部积分法

注意:含有常数如常数时,需要对常数进行讨论(如是否等于0)

  1. 定解问题与适定性

定解问题:我们把方程的解必须要满足的事先给定的条 件叫做定解条件,一个方程配上定解条件就构成一个定解问题。

适定性:对事先选定的函数空间,如果定解问题的解在该空间存在、唯一且稳定,则 称该定解问题是适定的。 解的稳定:设线性赋范空间H, 范数为. u1, u2分别 是定解数据为ψ1, ψ2的同一个定解问题的解。则解的稳定性可以表达为: ∀ε > 0, 存在δ > 0, 使得只要, 就有

【题目】证明不适定即证明解不稳定(系数取不同的解都满足定解问题但是距离很大)

二、二阶方程的特征理论与分类

  1. 二次型的标准型

二次型的标准型:

二次型的种类:

【题目】把非齐次方程化为标准型

(1解特征方程得特征曲线,注意交叉项正负 2 取变换回带,注意dy/dx系数与原方程关系,注意椭圆要多一个雅克比行列式不为0的变换项)

【题目】求特征线

三、分离变量法

  1. 分离变量法

  1. 分离变量 设有分离解

  1. 求解特征值问题 特征值分类讨论(指数解、线性解、三角函数)

特别注意涉及三角函数时,根据不同的k很多解

  1. 求解另一个问题 得出通解

  1. 代入初始条件 叠加所有可能解

  1. 不同坐标系下的分离变量法

  1. 转换坐标系,第一条方程转换成如下

  1. 分别解两个方程,注意此坐标系下有两个特殊条件

3.解出答案 带回原坐标xy

四、行波法

  1. 行波法(仅有二阶)

方法理论(不严谨概括):利用特征方程求得变换后【即第二章习题的过程】,将方程分为两个反方向行波方程之和,即

,代入初值条件后求解,再反变换即可

达朗贝尔公式:通过行波法,对这一类无界弦的自由振动问题可以直接套公式解决

该类问题形式。该类问题长这样:

它的解(达朗贝尔公式)长这样:

由特征方程划得的三种区域如下图所示。(含义不太理解)

【题目】求影响区域和决定区域

【题目】解双曲型方程

  1. 特征线法(一阶)

特征线法:方程为

利用以下方程求出特征线(注意a移到等式右边且不变号)

可求得方程为

【题目】求解一阶方程

3.齐次化原理(解非齐次波动方程)

针对无界弦强迫振动的定解问题

把该问题拆分为下述公式两个公式的叠加

后面公式的解由齐次化原理可求得

故最终解为

【题目】求解非齐次波动方程

回答问题格式即把套的公式拆成两个方程对应的写,得步骤分更稳一点

4.三维波动方程

三维波动方程

用泊松方程解该问题得(注意分母是a平方)

其中

【题目】求解三维波动方程

5.二维波动方程

二维波动方程如下

由三维波动方程降阶得到二维波动方程的解。二维方程的解为

【题目】求解二维波动方程

五、积分变化法

1.傅里叶变换法

对某一变量进行傅里叶变换,计算后反变换。例如对有界的热传导方程

傅里叶变换公式

拉普拉斯变换公式(令s=i即可用于傅里叶变换)

傅里叶变换后可得

接着代入初值条件再反变换可得答案。但更多时候用的是进一步运算的公式,用该公式可以绕开积分反变换

【题目】求热传导初值问题

其实上述方法不常用,直接套公式更常用

注意:需要用到高斯积分

2.拉普拉斯变换法(x定义域[0,∞))

对某一变量进行傅里叶变换,计算后反变换。与傅里叶变换类似,但x的定义域、f(x)的要求不同

在选取变换对象的时候,需要注意、

由于拉普拉斯变换求导时需要函数初值条件,若变量缺乏该初值条件则不能选该变量拉

【题目】用拉普拉斯变换法求解问题

六、格林函数法

  1. 求解二维无界泊松方程

考虑泊松方程

相应的格林函数满足的方程为

解出公式为

上面为二维,三维如下

一些边值条件等效格林

【题目】求解二维无界泊松方程(积分公式写漏了一项,完整的见上方)

2.镜像法求格林函数

【题目】用镜像法解上半平面第一类泊松方程

(更正:倒数第二行最开头一项漏写了个负号)

【题目】用镜像法解圆域内第一类泊松方程

后记

网上有08年试卷答案:华南理工大学期末考试数学物理方程卷a及答(08[1].6 - 道客巴巴 (doc88.com)

其实这一科目老老实实刷多几遍作业题就好了,老师也不会为难学生,所以本文章个人认为基本没啥意义,亲身实践发现题做少了考场还是会忘。认真做作业题吧!留意什么题型用什么方法,考试有些题目不会写用什么方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值