最长递增子序列
题面:
给定正整数序列x1,…,xn 。
(1)计算其最长不下降子序列的长度s。
(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列。
(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列。
«编程任务:
设计有效算法完成(1)(2)(3)提出的计算任务。
输入格式
第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数n:x1, …, xn。
输出格式
第1 行是最长不下降子序列的长度s。第2行是可取出的长度为s 的不下降子序列个数。第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的不下降子序列个数。
思路:
大佬题解
第一问是LIS,动态规划求解,第二问和第三问用网络最大流解决。
「建模方法」
首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K。
1、把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边。
2、建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边。
3、如果F[i]=1,从<i.b>到T连接一条容量为1的有向边。
4、如果j>i且A[i] < A[j]且F[j]+1=F[i],从<i.b>到<j.a>连接一条容量为1的有向边。
求网络最大流,就是第二问的结果。把边(<1.a>,<1.b>)(<N.a>,<N.b>)(S,<1.a>)(<N.b>,T)这四条边的容量修改为无穷大,再求一次网络最大流,就是第三问结果。
「建模分析」
上述建模方法是应用了一种分层图的思想,把图每个顶点i按照F[i]的不同分为了若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长上升子序列。由于序列中每个点要不可重复地取出,需要把每个点拆分成两个点。单位网络的最大流就是增广路的条数,所以最大流量就是第二问结果。第三问特殊地要求x1和xn可以重复使用,只需取消这两个点相关边的流量限制,求网络最大流即可。
需要注意最长为1的时候,特判一下,网上许多博客都过不了这个样例
in
1
1
out
1
1
1
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 10005;
int n, m, ss, tt, K;
int dis[N];
int cur[N];
int a[N], f[N];
int tmp;
queue<int> q;
struct Edge {
int to;
int value;
int next;
} e[N * 10];
int head[N], cnt = -1;
void add(int from, int to, int value) {
cnt++;
e[cnt].to = to;
e[cnt].value = value;
e[cnt].next = head[from];
head[from] = cnt;
}
bool bfs(int s, int t) {
q = queue<int>();
memset(dis, -1, sizeof(dis));
dis[s] = 0;
q.push(s);
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = head[x]; i > -1; i = e[i].next) {
int now = e[i].to;
if (dis[now] == -1 && e[i].value != 0) {
dis[now] = dis[x] + 1;
q.push(now);
}
}
}
return dis[t] != -1;
}
int dfs(int x, int t, int maxflow) {
if (x == t)
return maxflow;
int ans = 0;
for (int i = cur[x]; i > -1; i = e[i].next) {
int now = e[i].to;
if (dis[now] != dis[x] + 1 || e[i].value == 0 || ans >= maxflow)
continue;
cur[x] = i;
int f = dfs(now, t, min(e[i].value, maxflow - ans));
e[i].value -= f;
e[i ^ 1].value += f;
ans += f;
}
return ans;
}
int Dinic(int s, int t) {
int ans = 0;
while (bfs(s, t)) {
memcpy(cur, head, sizeof(head));
ans += dfs(s, t, INF);
}
return ans;
}
void solve1() {
int T = 2 * n + 1;
for (int i = 1; i <= n; i++) {
if (f[i] == 1)
add(0, i, 1), add(i, 0, 0);
if (f[i] == K)
add(i + n, T, 1), add(T, i + n, 0);
add(i, i + n, 1);
add(i + n, i, 0);
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
if (a[j] >= a[i] && f[j] == f[i] + 1)
add(i + n, j, 1), add(j, i + n, 0);
printf("%d\n", tmp=Dinic(0, T));
}
void solve2() {
if(K==1){
printf("%d\n",tmp);
return ;
}
cnt = -1;
memset(head, -1, sizeof(head));
memset(cur, 0, sizeof cur);
int T = 2 * n + 1;
for (int i = 1; i <= n; i++) {
int v = 1;
if (i == 1 || i == n)
v = 0x3f3f3f3f;
if (f[i] == 1)
add(0, i, v), add(i, 0, 0);
if (f[i] == K)
add(i + n, T, v), add(T, i + n, 0);
add(i, i + n, v);
add(i + n, i, 0);
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
if (a[j] >= a[i] && f[j] == f[i] + 1)
add(i + n, j, 1), add(j, i + n, 0);
printf("%d\n",Dinic(0, T));
}
int main() {
memset(head, -1, sizeof(head));
scanf("%d", &n);
ss = 0, tt = n + n + 1;
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n; i++) {
f[i] = 1;
for (int j = 1; j < i; j++)
if (a[j] <= a[i])
f[i] = max(f[i], f[j] + 1);
K = max(K, f[i]);
}
printf("%d\n", K);
solve1();
solve2();
return 0;
}