corr 计算相关性

DataFrame.corr(method='pearson', min_periods=1)
作用:

计算列的成对相关性,不包括 NA 和 bull 值,返回相关系数矩阵。
相关系数的绝对值越大,相关性越强:相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。

参数解析:

method:{‘pearson’, ‘kendall’, ‘spearman’} or callable

  • pearson:皮尔逊相关系数,也叫标准相关系数。 pearson相关系数衡量的是线性相关关系。若r=0,只能说x与y之间无线性相关关系,不能说无相关关系。
    公式
    N ∑ x i y i − ∑ x i ∑ y i N ∑ x i 2 − ( ∑ x i ) 2 N ∑ y i 2 − ( ∑ y i ) 2 \frac{N \sum x_iy_i - \sum x_i \sum y_i}{\sqrt {N \sum x_i^2 - (\sum x_i)^2}\sqrt{N \sum y_i^2 - (\sum y_i)^2}} Nxi2(xi)2 Nyi2(yi)2 Nxiyixiyi
  • kendall:kendall秩相关系数
  • spearman:spearman相关系数。斯皮尔曼相关系数被定义成等级变量之间的皮尔逊相关系数。对于样本容量为n的样本,n个原始数据被转换成等级数据。
    公式
    ρ = ∑ i ( x i − x ˉ ) ( y i − y ˉ ) ∑ i ( x i − x ˉ ) 2 ∑ i ( y i − y ˉ ) 2 \rho = \frac{\sum_i (x_i - \bar x)(y_i - \bar y)}{\sqrt {\sum_i (x_i - \bar x)^2 \sum_i (y_i - \bar y)^2}} ρ=i(xixˉ)2i(yiyˉ)2 i(xixˉ)(yiyˉ)
  • callable:自定义的计算函数

min_periods:int, optional

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值