一、正态分布
正态分布(Normal distribution)又名高斯分布(Gaussiandistribution),若随机变量X服从一个数学期望为μ、方差为σ2的高斯分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。我们通常所说的标准正态分布是μ = 0,σ = 1的正态分布。
二、卡方分布
三、t分布
四、F分布
应用场景:
Z就是正态分布,X2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除
比如X是一个Z分布,Y(n)=X12+X22+……+Xn^2,这里每个Xn都是一个Z分布,t(n)=X/根号(Y/n),F(m,n)=(Y1/m)/(Y2/N)
各个分布的应用如下:
方差已知情况下求均值是Z检验。
方差未知求均值是t检验(样本标准差s代替总体标准差R,由样本平均数推断总体平均数)
均值方差都未知求方差是X^2检验
两个正态分布样本的均值方差都未知情况下求两个总体的方差比值是F检验。