逻辑门电路图

基本逻辑运算定律

吸收公式
例1:证明A+AB=A(吸收公式)
A+AB=A(1+B)(类似数学的分配率)
=A·1(1律)
=A(1律)
分配公式
例2:证明A+BC=(A+B)(A+C)
(A+B)(A+C)=A·A+AB+AC+BC(逻辑分配律,跟数学的分配律差不多)
=A+AB+AC+BC(重叠律)
=A(1+B+C)+BC(逻辑分配律的逆命题,跟数学的分配律差不多)
=A+BC(1律,1+B+C=1)
其实这也是一种特殊的分配律,在此证明一下。
消因子公式
例3:证明A+A'B=A+B(消因子公式)
A+A'B=(A+A')(A+B)(例2中的分配律)
=1·(A+B)(互补律)
=A+B(1律)
分配律那一步是难点
并项公式
例4:证明AB+AB'=A(并项公式)
AB+AB'=A(B+B')(和数学中的分配律差不多)
=A·1(互补律)
=A(1律)
消项公式
例5:证明AB+A'C+BC=AB+A'C(消项公式)
AB+A'C+BC=AB+A'C+(A+A')BC(互补律,A+A'=1)
=AB+A'C+ABC+A'BC(和数学中的分配律差不多)
=AB+ABC+A'C+A'BC(整理一下)
=AB(1+C)+A'C(1+B)(分配律的逆运用,和数学差不多)
=AB·1+A'C·1(1律)
=AB+A'C(1律)