目录
用于分析数字电路中逻辑功能的数学方法——逻辑代数(或者称为布尔代数)。
广义上,逻辑泛指规律,分为思维逻辑和数理逻辑。数理逻辑,是用数学方法研究逻辑或形式逻辑的学科,属逻辑形式上符号化、数学化的逻辑。而逻辑代数和数理逻辑有巨大的联系,可以相互联系相互促进,代数可以帮助解决数理逻辑中的一些问题,而数理逻辑又可以帮助解决代数问题。
逻辑代数的基本运算包括与(AND)、或(OR)、非(NOT)三种。
1 三种基本逻辑运算
1.1 与(AND)
如果有两个操作数A和B,必须A和B的条件都满足,结果才为真,其他情况结果为假,那么就是逻辑与,可以写为:
上面公式是最常用的方式,同时也可以写成Y=A & B=A AND B。
在逻辑运算中,用“.”表示逻辑与运算,用“+”表示逻辑或运算,右上角“ ' ”表示逻辑非运算。
写成真值表为:
A | B | Y |
---|---|---|
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
逻辑与的符号形式:

或

逻辑与的电路图为

在上面电路中,当A=1表示开关闭合,A=0表示开关断开,Y=1表示灯亮,Y=0表示灯灭。当A和B均闭合时,灯泡Y亮,当A和B有一个是断开状态时,灯泡Y灭。两个条件必须全部具备,为真的结果才会发生。
使用Digital软件绘制逻辑与的电路图如下所示:

在上图中,开关处是一个继电器,继电器是一种自动控制电路的子开关。当A和B均为0的时候,可以看到Y为0。
当A为0,B为1时:

可以看到Y输出为0。
当A为1,B为0的情况如下图所示:

当A为1,B为0时,Y的输出为0。
当A和B都为1时:

当A和B都为1时,那么此时Y输出为1。
通过对比各种输入情况下的输出情况,可以得到这是逻辑与的电路图,可将其进行保存,这里推荐保存在Digital文件夹中的lib位置:

为什么要保存在lib文件夹中呢?因为如果我们以后想使用这个文件的功能,直接在组件中选用即可。如下所示:

直接调用之前做的逻辑与的组件示意图如下所示:

或者可以直接使用软件中逻辑与的符号:

1.2 或(OR)
如果有两个操作数A和B,A和B中有一个条件满足,那么结果就为真,如果A和B两个条件均不满足,结果为假,这就是逻辑或,可以写为: