2.数据分析-面板数据变系数模型

面板数据变系数模型

前言:在这一篇文章中,我们将某些影响因素的作用范围扩大,这些因素不仅影响截距项的变动,而且也能影响到斜率项。因素的作用范围就可能有一下几种组合,单独影响截距,单独影响斜率,既影响截距又影响斜率,既不影响截距也不影响斜率(随机效应)。因素又区分为两类,时间因素与个体特质因素。推荐先阅读数据分析-面板数据变截距模型 再阅读本文。

因素
时间因素
个体特质因素
随机因素
影响截距
影响斜率
影响截距与斜率
不影响截距,斜率
影响截距
影响斜率
影响截距与斜率
不影响截距,斜率
影响截距
影响斜率
影响截距与斜率
不影响截距,斜率

为了方便理解,我们将包含个体特质与时间因素的面板回归方程拆写为:
Y i t = α 0 + α i + λ 0 + λ t + X i t ′ β i + X i t ′ β t + X i t ′ β c + ε i t Y_{it}=\alpha_0 +\alpha_i + \lambda_0 +\lambda_t + X_{it}' \beta_i+ X_{it}' \beta_t+ X_{it}' \beta_c + \varepsilon_{it} Yit=α0+αi+λ0+λt+Xitβi+Xitβt+Xitβc+εit
β = β i + β t + β c \beta= \beta_i+ \beta_t + \beta_c β=βi+βt+βc
, i = 1 , 2 , 3 , . . . , N ; t = 1 , 2 , 3 , . . . , T ,i = 1,2,3,...,N;t=1,2,3,...,T ,i=1,2,3,...,N;t=1,2,3,...,T
当然这里的 β t 与 β i \beta_t与\beta_i βtβi也可以像拆分 α 和 λ \alpha和\lambda αλ一样,拆分出均值和差异项

项目含义
i i i个体标志序数
t t t时间序数
X i t X_{it} Xit观测变量, K ∗ 1 K*1 K1向量, ( X 1 i t , , X 2 i t , . . , X k i t ) ′ (X_{1it,},X_{2it},..,X_{kit})' (X1it,,X2it,..,Xkit)
β i \beta_i βi随个体特质而变动的参数, K ∗ 1 K*1 K1向量, ( 0 , 0 , . . . , β i , . . 0 ) ′ (0,0,...,\beta_i,..0)' (0,0,...,βi,..0)
β t \beta_t βt随时间而变动的参数, K ∗ 1 K*1 K1向量, ( 0 , 0 , . . . , β t , . . 0 ) ′ (0,0,...,\beta_t,..0)' (0,0,...,βt,..0)
β c \beta_c βc不变动的参数, K ∗ 1 K*1 K1向量, ( β 1 , β 2 , . . 0... , β k ) ′ (\beta_{1},\beta_{2},..0...,\beta_{k})' (β1,β2,..0...,βk)
β \beta β总参数向量, K ∗ 1 K*1 K1向量, ( β 1 , β 2 , . . . , β i , . . . , β t , . . . , β k ) ′ (\beta_{1},\beta_{2},...,\beta_i,...,\beta_t,...,\beta_{k})' (β1,β2,...,βi,...,βt,...,βk)
α 0 \alpha_0 α0个体效应在个体维度上的平均值
α i \alpha_i αi个体效应在个体维度上差异
α 0 + α i \alpha_0+\alpha_i α0+αi个体效应引起的截距项
λ 0 \lambda_0 λ0时间效应在时间维度上的平均值
λ t \lambda_t λt时间效应在时间维度上差异
λ 0 + λ t \lambda_0 +\lambda_t λ0+λt时间效应引起的截距项
ε i t \varepsilon_{it} εit随机扰动项

固定系数模型

模型

以截距项为个体固定效应,系数为个体固定效应:
Y i t = α 0 + α i + X i t ′ β i + X i t ′ β c + ε i t Y_{it}=\alpha_0 +\alpha_i +X_{it}' \beta_i + X_{it}' \beta_c + \varepsilon_{it} Yit=α0+αi+Xitβi+Xitβc+εit
以截距项为个体固定效应,系数为时间固定效应:
Y i t = α 0 + α i + X i t ′ β t + X i t ′ β c + ε i t Y_{it}=\alpha_0 +\alpha_i +X_{it}' \beta_t + X_{it}' \beta_c + \varepsilon_{it} Yit=α0+αi+Xitβt+Xitβc+εit

  • 以截距项为个体固定效应,系数为个体固定效应,仅考虑第3个参数随个体变化,举例理解:
    Y i t = α 0 + α i + β 1 x 1 i t + β 2 x 2 i t + β 3 i x 3 i t + ε i t Y_{it}=\alpha_0 +\alpha_i + \beta_1 x_{1it}+\beta_2x_{2it}+ \beta_{3i}x_{3it} + \varepsilon_{it} Yit=α0+αi+β1x1it+β2x2it+β3ix3it+εit
    其中 x 1 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 1 个 变 量 值 , β 1 表 示 第 1 个 变 量 前 的 参 数 x_{1it} 表示第i个个体在t时刻的第1个变量值, \beta_1表示第1个变量前的参数 x1itit1β11
    其中 x 2 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 2 个 变 量 值 , β 2 表 示 第 2 个 变 量 前 的 参 数 x_{2it} 表示第i个个体在t时刻的第2个变量值, \beta_2表示第2个变量前的参数 x2itit2β22
    其中 x 3 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 3 个 变 量 值 , β 3 i 表 示 依 赖 于 第 i 个 个 体 特 质 ( 第 i 个 个 体 特 质 是 个 体 分 类 的 类 别 , 表 示 个 体 差 异 影 响 x 3 的 斜 率 ) 、 第 3 个 变 量 前 的 参 数 x_{3it} 表示第i个个体在t时刻的第3个变量值, \beta_{3i}表示依赖于第i个个体特质(第i个个体特质是个体分类的类别,表示个体差异影响x_3的斜率)、第3个变量前的参数 x3itit3β3ii(ix3)3

  • 以截距项为个体固定效应,系数为时间固定效应,仅考虑第3个参数随时间变化,举例理解:
    Y i t = α 0 + α i + β 1 x 1 i t + β 2 x 2 i t + β 3 t x 3 i t + ε i t Y_{it}=\alpha_0 +\alpha_i + \beta_1 x_{1it}+\beta_2x_{2it}+ \beta_{3t}x_{3it} + \varepsilon_{it} Yit=α0+αi+β1x1it+β2x2it+β3tx3it+εit
    其中 x 1 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 1 个 变 量 值 , β 1 表 示 第 1 个 变 量 前 的 参 数 x_{1it} 表示第i个个体在t时刻的第1个变量值, \beta_1表示第1个变量前的参数 x1itit1β11
    其中 x 2 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 2 个 变 量 值 , β 2 表 示 第 2 个 变 量 前 的 参 数 x_{2it} 表示第i个个体在t时刻的第2个变量值, \beta_2表示第2个变量前的参数 x2itit2β22
    其中 x 3 i t 表 示 第 i 个 个 体 在 t 时 刻 的 第 3 个 变 量 值 , β 3 t 表 示 依 赖 于 第 t 个 时 段 特 质 ( 第 t 个 时 段 是 依 据 时 间 段 分 类 的 类 别 , 表 示 时 间 段 变 动 影 响 x 3 的 斜 率 ) 、 第 3 个 变 量 前 的 参 数 x_{3it} 表示第i个个体在t时刻的第3个变量值, \beta_{3t}表示依赖于第t个时段特质(第t个时段是依据时间段分类的类别,表示时间段变动影响x_3的斜率)、第3个变量前的参数 x3itit3β3tt(tx3)3

估计方法

  • 最小二乘虚拟变量法(LSDV)
    引入虚拟变量进行回归
    举例,以截距项为个体固定效应,系数为个体固定效应:
    考虑 β 2 与 β 3 \beta_2 与 \beta_3 β2β3受到性别的影响
    Y i t = α 0 + α i + β 1 x 1 i t + β 2 i x 2 i t + β 3 i x 3 i t + ε i t Y_{it}=\alpha_0 +\alpha_i + \beta_1 x_{1it}+\beta_{2i}x_{2it}+ \beta_{3i}x_{3it} + \varepsilon_{it} Yit=α0+αi+β1x1it+β2ix2it+β3ix3it+εit
    = α 0 + α i + β 1 x 1 i t + ( β 2 x 2 i t + γ 1 x 2 i t ∗ D 1 + γ 2 x 2 i t ∗ D 2 ) + ( β 3 x 3 i t + η 1 x 3 i t ∗ D 1 + η 2 x 3 i t ∗ D 2 ) + ε i t =\alpha_0 +\alpha_i +\beta_1 x_{1it}+(\beta_{2}x_{2it}+ \gamma_1 x_{2it}*D_1+ \gamma_2 x_{2it}*D_2)+( \beta_{3}x_{3it} + \eta_1 x_{3it}*D_1+\eta_2 x_{3it}*D_2)+ \varepsilon_{it} =α0+αi+β1x1it+(β2x2it+γ1x2itD1+γ2x2itD2)+(β3x3it+η1x3itD1+η2x3itD2)+εit
    = α 0 + α i + β 1 x 1 i t + ( γ 3 x 2 i t ∗ D 3 + γ 1 x 2 i t ∗ D 1 + γ 2 x 2 i t ∗ D 2 ) + ( η 3 x 3 i t ∗ D 3 + η 1 x 3 i t ∗ D 1 + η 2 x 3 i t ∗ D 2 ) + ε i t =\alpha_0 +\alpha_i +\beta_1 x_{1it}+( \gamma_{3}x_{2it}*D_3+ \gamma_1 x_{2it}*D_1+ \gamma_2 x_{2it}*D_2)+ (\eta_{3}x_{3it}*D_3 + \eta_1 x_{3it}*D_1+\eta_2 x_{3it}*D_2)+ \varepsilon_{it} =α0+αi+β1x1it+(γ3x2itD3+γ1x2itD1+γ2x2itD2)+(η3x3itD3+η1x3itD1+η2x3itD2)+εit
    设置虚拟变量:
    D 1 = { 1 if  第 i 个 个 体 性 别 为 男 性 0 if  第 i 个 个 体 性 别 为 其 他 D_1=\begin{cases} 1 &\text{if } 第i个个体性别为男性 \\ 0 &\text{if } 第i个个体性别为其他 \end{cases} D1={10if iif i
    D 2 = { 1 if  第 i 个 个 体 性 别 为 女 性 0 if  第 i 个 个 体 性 别 为 其 他 D_2=\begin{cases} 1 &\text{if } 第i个个体性别为女性 \\ 0 &\text{if } 第i个个体性别为其他 \end{cases} D2={10if iif i
    D 3 = { 1 if  第 i 个 个 体 性 别 为 中 性 0 if  第 i 个 个 体 性 别 为 其 他 D_3=\begin{cases} 1 &\text{if } 第i个个体性别为中性 \\ 0 &\text{if } 第i个个体性别为其他 \end{cases} D3={10if iif i
    注意:这里引入m-1个虚拟变量与m个虚拟变量的两种方式等价。

随机系数模型

这个模型是有局限性的:模型多多少少会忽略一些解释变量,因此会导致截距项与解释变量相关。所以说模型设置为个体固定效应的模型很正常。随机变系数效应模型的截距项也应该是随机的,截距项如果不是随机的最好不要用随机变系数效应模型。
模型举例:
Swamy随机模型:
Y i = X i β i ~ + ε i , i = 1 , 2 , . . . , N Y_i=X_i\tilde{\beta_i}+\varepsilon_i,i=1,2,...,N Yi=Xiβi~+εi,i=1,2,...,N
β i ~ = β 0 + β i \tilde{\beta_i}=\beta_0+\beta_i βi~=β0+βi
E ( β i ) = 0 k ∗ 1 , E(\beta_i)=0_{k *1}, E(βi)=0k1,

E ( β i β j ′ ) = { Δ i   i = j 0   i ≠ j E(\beta_i\beta_j')=\begin{cases} \Delta_i &\text{ }i=j \\ 0 &\text{ } i \neq j \end{cases} E(βiβj)={Δi0 i=j i=j;

E ( X i t ′ β i ) = 0 E(X_{it}'\beta_i)=0 E(Xitβi)=0;

E ( ε i ε j ′ ) = { σ i   i = j 0   i ≠ j E(\varepsilon_i\varepsilon_j')=\begin{cases} \sigma_i &\text{ }i=j \\ 0 &\text{ } i \neq j \end{cases} E(εiεj)={σi0 i=j i=j;

模型设定检验

由于我们不知道模型中哪些变量的系数是变动的,所以需要依据检验是否某个变量的系数是变动的

  • 数据量很大,可以考虑全部变量系数变化
  • 依次从全部变量系数不同,m-1个系数不同,m-2个系数不同,…,1个系数不同逐个检验(此方法用于变量个数很多或者虚拟变量个数很多的情形)

LR检验

Y i t = α 0 + α i + β 1 x 1 i t + ( β 2 x 2 i t + γ 1 x 2 i t ∗ D 1 + γ 2 x 2 i t ∗ D 2 ) + ( β 3 x 3 i t + η 1 x 3 i t ∗ D 1 + η 2 x 3 i t ∗ D 2 ) + ε i t Y_{it}=\alpha_0 +\alpha_i +\beta_1 x_{1it}+(\beta_{2}x_{2it}+ \gamma_1 x_{2it}*D_1+ \gamma_2 x_{2it}*D_2)+( \beta_{3}x_{3it} + \eta_1 x_{3it}*D_1+\eta_2 x_{3it}*D_2)+ \varepsilon_{it} Yit=α0+αi+β1x1it+(β2x2it+γ1x2itD1+γ2x2itD2)+(β3x3it+η1x3itD1+η2x3itD2)+εit
原假设: γ 1 = γ 2 = η 1 = η 2 = 0 \gamma_1=\gamma_2=\eta_1=\eta_2=0 γ1=γ2=η1=η2=0;(变量的系数不变动)
备择假设: γ 1 , γ 2 , η 1 , η 2 \gamma_1,\gamma_2,\eta_1,\eta_2 γ1,γ2,η1,η2不全为0;(变系数模型)

LR检验的无约束回归方程(备择假设成立):
Y i t = α 0 + α i + β 1 x 1 i t + ( β 2 x 2 i t + γ 1 x 2 i t ∗ D 1 + γ 2 x 2 i t ∗ D 2 ) + ( β 3 x 3 i t + η 1 x 3 i t ∗ D 1 + η 2 x 3 i t ∗ D 2 ) + ε i t Y_{it}=\alpha_0 +\alpha_i +\beta_1 x_{1it}+(\beta_{2}x_{2it}+ \gamma_1 x_{2it}*D_1+ \gamma_2 x_{2it}*D_2)+( \beta_{3}x_{3it} + \eta_1 x_{3it}*D_1+\eta_2 x_{3it}*D_2)+ \varepsilon_{it} Yit=α0+αi+β1x1it+(β2x2it+γ1x2itD1+γ2x2itD2)+(β3x3it+η1x3itD1+η2x3itD2)+εit
计算 l n L u lnL_u lnLu
LR检验的约束回归方程(原假设成立):
Y i t = α 0 + α i + β 1 x 1 i t + β 2 x 2 i t + β 3 x 3 i t + ε i t Y_{it}=\alpha_0 +\alpha_i + \beta_1 x_{1it}+\beta_{2}x_{2it}+ \beta_{3}x_{3it} + \varepsilon_{it} Yit=α0+αi+β1x1it+β2x2it+β3x3it+εit
计算 l n L r lnL_r lnLr

Swamy检验

Y i = X i β i ~ + ε i , i = 1 , 2 , . . . , N Y_i=X_i\tilde{\beta_i}+\varepsilon_i,i=1,2,...,N Yi=Xiβi~+εi,i=1,2,...,N
β i ~ = β 0 + β i \tilde{\beta_i}=\beta_0+\beta_i βi~=β0+βi
E ( β i ) = 0 k ∗ 1 , E(\beta_i)=0_{k *1}, E(βi)=0k1,
原假设: β 0 = β 1 = β 2 = β 3 = . . . = β N \beta_0=\beta_1=\beta_2=\beta_3=...=\beta_N β0=β1=β2=β3=...=βN (不变系数)
备择假设: β 0 , β 1 , β 2 , β 3 , . . . , β N \beta_0,\beta_1,\beta_2,\beta_3,...,\beta_N β0,β1,β2,β3,...,βN不全相等(变系数)

  • 同方差 v a r ( ε i ) = σ ε 2 var(\varepsilon_i)=\sigma_\varepsilon^2 var(εi)=σε2
    服从F分布
  • 异方差 v a r ( ε i ) = σ i 2 var(\varepsilon_i)=\sigma_i^2 var(εi)=σi2
    检验统计量为 S w = ∑ i = 1 N ( β ^ i − β ^ 0 ∗ ) ′ X i ′ X i ( β ^ i − β ^ 0 ∗ ) σ ^ i 2 → d χ 2 ( ( N − 1 ) k ) ( 给 定 N ; T → ∞ 时 ) Sw=\displaystyle\sum_{i=1}^N\frac{(\hat\beta_i-\hat\beta_0^*)'X_i'X_i(\hat\beta_i-\hat\beta_0^*)}{\hat\sigma_i^2}\xrightarrow[]{d}\chi^2((N-1)k)(给定N;T\xrightarrow{} \infty时 ) Sw=i=1Nσ^i2(β^iβ^0)XiXi(β^iβ^0)d χ2((N1)k)(N;T )
    β ^ 0 ∗ = ( ∑ i = 1 N σ ^ i 2 X i ′ X i ) − 1 ( ∑ i = 1 N σ ^ i 2 X i ′ Y i ) \hat\beta_0^*=(\displaystyle\sum_{i=1}^N\hat\sigma_i^2X_i'X_i)^{-1}(\displaystyle\sum_{i=1}^N\hat\sigma_i^2X_i'Y_i) β^0=(i=1Nσ^i2XiXi)1(i=1Nσ^i2XiYi)

模型检验步骤

固定效应

LR逐次检验:

  1. 原假设:混合回归模型(截距与斜率都不变)
    备择假设:截距项与斜率项(k个变量)发生变化
    此时:不拒绝原假设,建立混合回归模型,检验结束;拒绝原假设,截距项与斜率项之中至少有一项在变化,因此进入下一步检验。

  2. 引入截距项的约束函数,验证是否成立
    原假设:变量的斜率变化 (约束条件成立)
    备择假设:截距项、变量的斜率变化(约束条件不成立)
    此时:不拒绝原假设,认为截距项不变。接下来要检验哪些变量的斜率发生变化;拒绝原假设,认为截距项变化,接下来需要检验截距项随时点变化、个体变化、个体时点变化,以及哪些变量的斜率发生变化。

  3. 在上一步原假设的基础上在引入任意k-1个关于变量系数的约束条件,有1个变量系数自由另外的k-1个约束条件的,认为这1个变量系数为模型唯一变动的变量系数,否则认为至少有2个变量系数变动。
    原假设:个体FX变截距,考察其中一个变量变化,另外k-1个变量不发生变化。
    备择假设:个体FX变截距,至少有两个变量系数变化。
    此时:不拒绝原假设,我们认为个体FE变截距,且只有一个变量斜率发生变动。检验结束。
    拒绝原假设,认为截距项发生变动,并且k-1个变量的斜率中至少有一个会变。继续检验。

  4. 减少1个约束条件个数,重复第三步检验。

原假设
备择假设
原假设
原假设
备择假设
备择假设
原假设
备择假设
模型检验,约束全部系数与截距项
混合回归模型 : 截距与斜率都不变
结束检验,建立混合回归模型
截距项和斜率项的k个变量斜率之中至少有一个发生变化,约束截距项
截距不变,变量的斜率变化
引入k-1个约束,检测那个斜率变化
约束条件成立,检测出,检验结束
认为有两个斜率变动,因此i减少约束条件个数
截距项与变量的斜率变化
截距项变化,一个变量斜率变化,其余k-1个变量斜率不变化
检验结束,建立变截距,1个变量系数变化的模型
截距项变化,所有的变量系数都发生变化,下一步检验减少约束条件个数
随机效应

原假设:混合模型
备择假设:截距项、所有变量(k个变量)的斜率都是随机效应。
此时:若不拒绝原假设,表明建立混合(pool)模型,检验到此结束。
若拒绝原假设,建立随机系数模型。
注意:随机系数模型的截距项也应该是随机。

建模步骤

数据非平稳
数据平稳
数据平稳
不拒绝原假设
拒绝原假设
不拒绝原假设
拒绝原假设
不拒绝原假设,意味着截距项不变动
拒绝原假设,意味着截距项变动
不拒绝原假设
拒绝原假设
输入数据
描述性统计分析
面板单位根检验
面板协整分析
F检验 or LR检验
变系数检验
固定系数检验
系数不变
系数变动
随机系数检验
系数不变
系数变动
使用混合回归
豪斯曼检验
选择个体随机效应模型
选择个体固定效应模型
  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值