系统动力学Vensim的使用

10分钟入门视频

	https://www.bilibili.com/video/BV1tk4y1R7Vt?t=572

掌握 变量,速率,水平,箭头与绘制模拟数据的图

以人口增长为例:

在这里插入图片描述
函数设置:
在这里插入图片描述
在这里插入图片描述
作图 点击侧边栏就可。

关键呢:
变量,仅仅设置计算的储存,无法设置初始值。
水平:类似结果,保存结果,可以设置初始值。
箭头:连接因果关系。
速率:以加法方式进行下一个水平与变量的迭代。

### PointNet在点云深度学习中的实现与应用 #### PointNet概述 PointNet是一种专门设计用于处理无序点集的神经网络架构,在三维物体识别和分割等领域表现出色[^1]。该模型可以直接接受原始点云数据作为输入,无需额外的数据预处理步骤。 #### 主要特点 - **对称函数**:为了应对点云数据固有的排列不变性问题,PointNet采用最大池化操作来构建全局特征向量,从而确保输出不受输入顺序的影响。 - **多层感知机(MLP)**:每一层都由共享权重的全连接层组成,允许不同位置上的点被相同方式编码。 - **T-net模块**:引入了一个小型子网用来估计空间变换矩阵,使得整个结构具备一定的鲁棒性和泛化能力。 #### 应用实例 对于具体的任务如3D对象分类或语义场景解析,可以通过调整最后一层的维度大小以及损失函数的形式来进行适配。例如,在ModelNet40数据集上训练好的PointNet模型可以很容易迁移到其他相似的任务当中去[^2]。 #### PyTorch实现示例 以下是基于PyTorch框架的一个简单版本PointNet实现: ```python import torch.nn as nn from typing import Tuple class TNet(nn.Module): def __init__(self, k=64): super().__init__() self.k = k # 定义T-net的具体结构... def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]: batch_size = x.size()[0] # 前向传播过程... return transformed_points, transform_matrix class PointNetClassifier(nn.Module): def __init__(self, num_classes=40): super().__init__() self.tnet_3d = TNet(k=3) self.mlp1 = nn.Sequential( nn.Conv1d(in_channels=3, out_channels=64), ... ) self.tnet_64d = TNet(k=64) self.global_feature_extractor = nn.Sequential( nn.Conv1d(...), # 更多卷积层 ... ) self.fc_layers = nn.Linear(global_features_dim, num_classes) def main(): model = PointNetClassifier() input_data = ... # 准备好一批次的点云数据 output_logits = model(input_data) ``` 上述代码片段展示了如何定义`TNet`类及其前向传递逻辑;接着是完整的`PointNetClassifier`类,它包含了两个级别的T-net组件以及其他必要的组成部分。最后给出了一个简单的入口函数用于创建并调用这个分类器[^3]。 #### 数据处理优化 值得注意的是,虽然最初的PointNet论文中提到的方法是对整批点云一次性送入网络进行处理,但在后续的发展过程中出现了更加高效的改进方案——即PointNet++算法。后者通过对输入点云执行局部区域内的聚类划分后再分别提取特征,有效降低了计算复杂度的同时提高了表达力[^4]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值