LPRNet车牌识别模型训练及CCPD数据集预处理

本文介绍了使用LPRNet_Pytorch训练车牌识别模型的详细步骤,包括数据集准备、训练参数设置、训练与测试命令,以及如何处理特殊车牌。同时,讲解了从CCPD数据集中抽取车牌数据的方法,转换为LPRNet训练所需格式,还分享了车牌号码的特点和规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LPRNet车牌识别模型训练及CCPD数据集预处理

1 LPRNet车牌识别模型训练

1.1 源码:LPRNet_Pytorch-master

源码官网:GitHub - sirius-ai/LPRNet_Pytorch: Pytorch Implementation For LPRNet, A High Performance And Lightweight License Plate Recognition Framework.

链接:https://pan.baidu.com/s/1nMzJ2reDcGA6RJnHnNzcWg?pwd=lprn 
提取码:lprn
本人上传的代码包含部分修改及训练测试命令等... ...
详询+V号:   xuanze500

1.2 LPRNet_Pytorch训练及测试注意项

1.2.1 数据集

包含datas/train和datas/test文件夹,文件夹中是以车牌命名的.jpg文件,如“晋A30YS6.jpg”、“桂AR8501.jpg”、“鲁Q08L9D.jpg”等,且每一张.jpg的图是根据车牌四个角点截取的矩形车牌的图片。示例如下:

在这里插入图片描述

1.2.2 训练参数

(1)/LPRNet_Pytorch-master/train_LPRNet.py参数截取

def get_parser():
    parser = argparse.ArgumentParser(description='parameters to train net')
    parser.add_argument('--max_epoch', default=495, help='epoch to train the network')  ##################
    parser.add_argument('--img_size', default=[94, 24], help='the image size')       
    parser.add_argument('--train_img_dirs', default="/media/user/mydata/zzplates/train", help='the train images path')
    parser.add_argument('--test_img_dirs', default="/media/user/mydata/zzplates/test", help='the test images path')
    parser.add_argument('--dropout_rate', default=0.5, help='dropout rate.')
    parser.add_argument('--learning_rate', default=0.0001, help='base value of learning rate.')
    # parser.add_argument('--learning_rate', default=0.1, help='base value of learning rate.')
    parser.add_argument('--lpr_max_len', default=8, help='license plate number max length.')
    parser.add_argument('--train_batch_size', default=512, help='training batch size.')
    parser.add_argument('--test_batch_size', default=128, help='testing batch size.')
    parser.add_argument('--phase_train', default=True, type=bool, help='train or test phase flag.')
    parser.add_argument('--num_workers', default=1, type=int, help='Number of workers used in dataloading')
    parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
    parser.add_argument('--resume_epoch', default=0, type=int, help='resume iter for retraining')
    parser.add_argument('--save_interval', default=5000, type=int, help='interval for save model state dict')
    parser.add_argument('--test_interval', default=5000, type=int, help='interval for evaluate')
    parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
    parser.add_argument('--weight_decay', default=2e-5, type=float, help='Weight decay for SGD')
    parser.add_argument('--lr_schedule', def
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃油淋鸡的莫何

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值