LPRNet的安装与测试车牌识别效果

本文介绍了作者尝试将YOLOv8和LPRnet集成以提高车牌识别性能的过程,包括从GitHub下载LPRNet项目,解决中文字符识别问题,以及提供测试代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

继YOLOv8后又琢磨了一下LPRnet实现车牌识别,但是LPRnet虽然识别精度高,但是只能识别预设好的尺寸和车牌图像,下一步准备把YOLOv8和LPRnet结合起来测试一下车牌识别的效果。


1.拉取项目

使用git从LPRNet官网https://github.com/sirius-ai/LPRNet_Pytorch上找到拉取链接,在git中输入git clone https://github.com/sirius-ai/LPRNet_Pytorch.git拉取项目123

2.测试

  1. 【错误示范】直接在终端输入python test_LPRNet.py --show True进行测试,不出意外的话会输出一串如下报错,这是因为cv2.imread无法读出中文名字导致报错,需先对./data/load_data.py进行修改。在这里插入图片描述
  2. 打开./data/load_data.py文件,使用Ctrl+F找到Image = cv2.imread(filename)这一行,替换为Image = cv2.imdecode(np.fromfile(filename, dtype=np.uint8), -1),即可正常识别中文字符。在这里插入图片描述
  3. 在终端输入python test_LPRNet.py --show True或在./test_LPRNet.py中get_parser下把default改为True后运行代码进行测试在这里插入图片描述测试效果如下,逐个关闭小窗口即可看到运行效果在这里插入图片描述将show设为False后运行可以看到Acc以及运行时间在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值