结构体包含左孩子右孩子,高度,平衡因子
子函数里只有insert是递归,
insert:先判断往哪里插入,往左插导致失衡必然是LL型或者LR型,
updateHeight:在每一次调整完二叉树,或者插入一个新结点的时候,需要更新一下高度
height初始值为1,因为插入只能插入在叶子结点,但是如果失衡就会更新可能不为1
#include<bits/stdc++.h>
using namespace std;
int s[30];
struct node{
int data,height;
node *left=NULL,*right=NULL;
}*root;
int getHeight(node* root){
if(root==NULL)
return 0;
else return root->height;
}
int getfactor(node* root){
return getHeight(root->left)-getHeight(root->right);
}
void updateHeight(node* &root){
root->height=max(getHeight(root->left),getHeight(root->right))+1;
}
void L(node* &root){
node* temp=root->right;
root->right=temp->left;
temp->left=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
void R(node* &root){
node* temp=root->left;
root->left=temp->right;
temp->right=root;
updateHeight(root);
updateHeight(temp);
root=temp;
}
void insert(node* &root,int v){
if(root==NULL){
root=new node;
root->data=v;
root->height=1;
return;
}
if(v<root->data){
insert(root->left,v);
updateHeight(root);
if(getfactor(root)==2){
if(getfactor(root->left)==1){ //LL
R(root);
}
else{ //LR
L(root->left);
R(root);
}
}
}
else if(v>root->data){
insert(root->right,v);
updateHeight(root);
if(getfactor(root)==-2){
if(getfactor(root->right)==-1){
L(root);
}
else{
R(root->right);
L(root);
}
}
}
}
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>s[i];
insert(root,s[i]);
}
cout<<root->data<<endl;
return 0;
}