AVL模板 记忆

结构体包含左孩子右孩子,高度,平衡因子
子函数里只有insert是递归,
insert:先判断往哪里插入,往左插导致失衡必然是LL型或者LR型,
updateHeight:在每一次调整完二叉树,或者插入一个新结点的时候,需要更新一下高度
height初始值为1,因为插入只能插入在叶子结点,但是如果失衡就会更新可能不为1

#include<bits/stdc++.h>
using namespace std;
int s[30];
struct node{
    int data,height;
    node *left=NULL,*right=NULL;
}*root;
int getHeight(node* root){
    if(root==NULL)
        return 0;
    else return root->height;
}
int getfactor(node* root){
    return getHeight(root->left)-getHeight(root->right); 
}
void updateHeight(node* &root){
    root->height=max(getHeight(root->left),getHeight(root->right))+1;
}
void L(node* &root){
    node* temp=root->right;
    root->right=temp->left;
    temp->left=root;
    updateHeight(root);
    updateHeight(temp);
    root=temp;
}
void R(node* &root){
    node* temp=root->left;
    root->left=temp->right;
    temp->right=root;
    updateHeight(root);
    updateHeight(temp);
    root=temp;
}
void insert(node* &root,int v){
    if(root==NULL){
        root=new node;
        root->data=v;
        root->height=1;
        return;
    }
    if(v<root->data){
        insert(root->left,v);
        updateHeight(root);
        if(getfactor(root)==2){
            if(getfactor(root->left)==1){   //LL
                R(root);
            }
            else{                           //LR
                L(root->left);
                R(root);
            }
        }
    }
    else if(v>root->data){
        insert(root->right,v);
        updateHeight(root);
        if(getfactor(root)==-2){
            if(getfactor(root->right)==-1){
                L(root);
            }
            else{
                R(root->right);
                L(root);
            }
        }
    }
}
int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>s[i];
        insert(root,s[i]);
    }
    cout<<root->data<<endl;
    return 0;
}


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值