【NOIP2018】保卫王国【矩阵】【倍增】

3 篇文章 0 订阅
2 篇文章 0 订阅

传送门

其实这件事情告诉我们:万物皆可矩阵。

同样的,树形dp做一次O(n),一共n次,所以为n^2的复杂度。

这样有很多分呢qwq!

但是还要更好。

一般来说,当我们找到一个复杂度接近正确(个p)的方法时,先考虑怎么优化。

我们不应该每次都重新做一遍,而是只管那些被影响了的部分。

设被强制的两个点为x,y。

我们发现,在树形dp的基础上,它们会影响的答案只包括他们以及他们俩到根节点路上的点。

而那些其它的子树都没变。所以我们要想想怎么记录下这些答案并合并。

正如上次说的:一个线性变换首先考虑矩阵。而本题这种弱智树形dp更应该如此。

设dp[v][0]表示v不放军队,dp[v][1]表示放军队。假设我们已知这两个东西。我们来考虑怎么得到u的答案。

强行套矩阵我们发现转移矩阵为

\begin{bmatrix} -1 &dp'[u][1] \\ dp'[u][0]&dp'[u][1] \end{bmatrix}

重载矩阵运算为取对应项和的最小值。并且对于-1特判因为这个代表不参与运算。

dp‘[u]表示u结点去除当前v结点后剩下的答案。这样就可以得到那些不被影响的子树。

然后我们可以简单地发现这个也满足结合律。合起来取min嘛,,我也不会证明。

所以我们可以先把这个转移矩阵预处理出一个倍增数组。到时候从最下面开始往上走就行了。

对于一个询问的x,y两个端点。按照LCA的方式去跳,路上乘转移矩阵,最后再从LCA跳到1号节点就能得到dp值。

关于重载add和min注意看代码。而且为了运算安全我随手加了一个ans结构体。

#include<bits/stdc++.h>
using namespace std;
#define in read()
#define int long long
int in{
	int cnt=0,f=1;char ch=0;
	while(!isdigit(ch)){
		ch=getchar();if(ch=='-')f=-1;
	}
	while(isdigit(ch)){
		cnt=cnt*10+ch-48;
		ch=getchar();
	}return cnt*f;
}
int add(int a,int b){return ((~b)&&(~a))?(a+b):(-1);}
int min(int a,int b){return (((!~b)||(a<b))&&(~a))?a:b;}
struct node{
	int a[3][3];
	node(int _x=0,int _y=0,int _xx=0,int _yy=0){
		a[1][1]=_x;a[1][2]=_y;
		a[2][1]=_xx;a[2][2]=_yy;
	}
	node operator *(const node &b){
		node ans;
		ans.a[1][1]=min(add(a[1][1],b.a[1][1]),add(a[1][2],b.a[2][1]));
		ans.a[1][2]=min(add(a[1][1],b.a[1][2]),add(a[1][2],b.a[2][2]));
		ans.a[2][1]=min(add(a[2][1],b.a[1][1]),add(a[2][2],b.a[2][1]));
		ans.a[2][2]=min(add(a[2][1],b.a[1][2]),add(a[2][2],b.a[2][2]));
		return ans;
	}
};
struct bili{
	int x,y;
	bili(int _x=0,int _y=0){
		x=_x;y=_y;
	}
	bili operator *(const node &b){
		return bili(min(add(x,b.a[1][1]),add(y,b.a[2][1])),min(add(x,b.a[1][2]),add(y,b.a[2][2])));
	}
};
int dp[100003][2],fa[100003][22],dep[100003];
node mat[100003][22];
int n,m,first[100003],nxt[200003],to[200003],tot;
int p[100003];char ch[5];
void ad(int a,int b){
	nxt[++tot]=first[a];first[a]=tot;to[tot]=b;
}
void dfs1(int u,int faa){
	dp[u][1]=p[u];dep[u]=dep[faa]+1;
	for(int i=1;i<=19;i++)fa[u][i]=fa[fa[u][i-1]][i-1];
	for(int i=first[u];i;i=nxt[i]){
		int v=to[i];if(v==faa)continue;
		fa[v][0]=u;dfs1(v,u);
		dp[u][0]+=dp[v][1];
		dp[u][1]+=min(dp[v][0],dp[v][1]);
	}
}
void dfs2(int u,int faa){
	for(int i=1;i<=19;i++)mat[u][i]=mat[u][i-1]*mat[fa[u][i-1]][i-1];
	for(int i=first[u];i;i=nxt[i]){
		int v=to[i];if(v==faa)continue;
		mat[v][0]=node(-1,dp[u][1]-min(dp[v][0],dp[v][1]),dp[u][0]-dp[v][1],dp[u][1]-min(dp[v][0],dp[v][1]));
		dfs2(v,u);
	}
}
int solve(int x,int a,int y,int b){
	if(dep[x]<dep[y])swap(x,y),swap(a,b);
	bili L=bili(dp[x][0],dp[x][1]),R=bili(dp[y][0],dp[y][1]);
	if(a)L.x=-1;else L.y=-1;
	if(b)R.x=-1;else R.y=-1;
	for(int i=19;i>=0;i--){
		if(dep[fa[x][i]]>=dep[y]){
			L=L*mat[x][i];x=fa[x][i];
		}
	}
	int st;bili ans;
	if(x!=y){
		for(int i=19;i>=0;i--){
			if(fa[x][i]!=fa[y][i]){
				L=L*mat[x][i];R=R*mat[y][i];
				x=fa[x][i];y=fa[y][i];
			}
		}
		st=fa[x][0];
		ans=bili(add(dp[st][0]-dp[x][1]-dp[y][1],add(L.y,R.y)),add(dp[st][1]-min(dp[x][1],dp[x][0])-min(dp[y][0],dp[y][1]),add(min(L.x,L.y),min(R.x,R.y)))); 
	}else{
		st=x;ans=L;if(b)ans.x=-1;else ans.y=-1; 
	}
	for(int i=19;i>=0;i--){
		if(dep[fa[st][i]]>=1){
			ans=ans*mat[st][i];st=fa[st][i];
		}
	}return min(ans.x,ans.y);
}
signed main(){
	n=in;m=in;scanf("%s",ch);
	for(int i=1;i<=n;i++)p[i]=in;
	for(int i=1;i<n;i++){int a=in;int b=in;ad(a,b);ad(b,a);}
	dfs1(1,0);dfs2(1,0);int aa,xx,bb,yy;
	//for(int i=1;i<=n;i++)cout<<dp[i][0]<<" "<<dp[i][1]<<endl;
	while(m--){
		aa=in;xx=in;bb=in;yy=in;
		cout<<solve(aa,xx,bb,yy)<<'\n';
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值