第39级台阶问题(非递归)

题目如下

小明刚刚看完电影《第39级台阶》。离开电影院的时候,他数了数礼堂前的台阶数,恰好是39级!
站在台阶前,他突然又想着一个问题:
如果我每一步只能迈上1个或2个台阶。先迈左脚,然后左右交替,最后一步是迈右脚,也就是说一共要走偶数步。那么,上完39级台阶,有多少种不同的上法呢?
请你利用计算机的优势,帮助小明寻找答案。

思路

此题既要考虑步数为偶数,又要考虑排列组合,由此想到了高中的排列组合公式,写了排列组合函数,记录下满足要求的偶数步个数和奇数步个数,再由排列组合公式求解!!!

要十分重视阶乘溢出的问题 ,我没想到数字会如此之大,在排列组合函数中C(n,m)中尽量使n小,n直接决定了阶乘的次数!!!

代码如下

#include<stdio.h>
#include<stdlib.h>
long long C(int n, int m)//排列组合函数 ,m下    n上 
{
	int x, y;
	x = n; y = m;
	long long she = 1, xhe = 1;
	long long i, j, jieguo = 0;
	for (i = 0; i < n; i++)
	{
		she = she * y;
		y--;
	}
	for (j = 0; j < n; j++)
	{
		xhe = xhe * x;
		x--;
	}
	jieguo = she / xhe;
	return jieguo;
}

int main()
{
	int a[99]={0};//跨两步的次数 
	int b[99]={0};//跨一步的次数 
	int n=39;
	int i=0; 
	int j=0;
	int k=0,l=0;
	for(i=0;i<=n/2;i++)
	{		
		for(j=0;j<=n;j++)
		{
			if((2*i+j==n)&&((i+j)%2==0))
			{
			a[k++]=i;
			b[l++]=j;
			}
	    }
	}
	long long m,pa=0,pb=0;
	for(m=0;m<k;m++)
	{
		pb=a[m];
		if(a[m]>b[m])
		pb=b[m];
		pa+=C(pb,a[m]+b[m]);
	}
	printf("%d\n",pa);
}

运行截图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值