python数组基本使用

使用Numpy进行数组运算

相比 List,NumPy 数组的优势
NumPy 全称为 Numerical Python,是 Python 的一个以矩阵为主的用于科学计算的基础软件包。NumPy 和 Pandas、Matpotlib 经常结合一起使用,所以被人们合称为数据分析三剑客。Numpy 中有功能强大的 ndarray 对象,能创建 N 维的数组,另外还提供很多通用函数,支持对数组的元素进行操作、支持对数组进行算法运算以及提供常用的统计函数

相比 List 对象,NumPy 数组有以下优势:
这是因为列表 list 的元素在系统内存中是分散存储的,而 NumPy 数组存储在一个均匀连续的内存块中。这样数组计算遍历所有元素,不像列表 list 还需要对内存地址进行查找,从而节省了计算资源。
Numpy数组能够运用向量化运算来处理整个数组,速度较快;而 Python 的列表则通常需要借助循环语句遍历列表,运行效率相对来说要差。
NumPy 中的矩阵计算可以采用多线程的方式,充分利用多核 CPU 计算资源,大大提升了计算效率。
Numpy 使用了优化过的 C API,运算速度较快。

创建一、二维数组

import numpy as np

one = np.array([1,2,3])
two = np.array([[1,2,3],[4,5,6]])

print(one)
print(two)

print('one: ', one.shape)
print('two: ', two.shape)

其中 shape 是数组的一个属性,表示获取数组大小(有多少行,有多少列),如果是一维数组,则只显示(行,)。代码中打印出 nd_two 的形状,输出为(2,3),表示数组中有 2 行 3 列。
二维数组需要2个以上[],([[1,2,3],[4,5,6]])。

在这里插入图片描述
使用内置函数创建数组

x0 = np.arange(1,20,3)
print(x0)

x2 = np.arange(10)
print(x2)

x1 = np.arange(15).reshape((5,3))
print(x1)
print(type(x1))


x3 = np.full((5,4),10,dtype=int)
print(x3)

x4 = np.eye(3,dtype=int)
print(x4)

x5 = np.random.randint(0,100,(4,5))
print(x5)

在这里插入图片描述

矩阵乘法

import numpy as np

# 矩阵的点乘
x1 = np.array([1,2,3,4])
print(x1)
theat = np.array([1,2,3,4]).T #转置
y = np.dot(theat,x1)
print(y)
print(type(y))

# 矩阵相乘
x2 = np.array([[1,2,3],[3,2,1],[4,5,6]])
y2 = np.array([1,2,3]).T
print(y2)
yy = np.dot(x2,y2)
print(yy)

使用 zeros(),ones(),full() 创建数组

import numpy as np
# 创建一个 3x4 的数组且所有值全为 0
x3 = np.zeros((3, 4), dtype=int)
print(x3)
# 创建一个 3x4 的数组且所有元素值全为 1
x4 = np.ones((3, 4), dtype=int)
print(x4)
# 创建一个 3x4 的数组,然后将所有元素的值填充为 2
x5 = np.full((3, 4), 2, dtype=int)
print(x5)

>>> 运行结果:

[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]

[[1 1 1 1]
 [1 1 1 1]
 [1 1 1 1]]

[[2 2 2 2]
 [2 2 2 2]
 [2 2 2 2]]

使用 eye() 创建单位矩阵

eye() 创建的数组特点是行数和列数都是一样。因为它创建出来的是单位矩阵,单位矩阵是正形矩阵,对角线的值均为 1,其他位置的值为 0。

import numpy as np
# 创建 3x3 的单位矩阵
x6 = np.eye(3, dtype=int)
print(x6)

>>> 运行结果:

[[1 0 0]
 [0 1 0]
 [0 0 1]]


4 使用 diag() 创建对角矩阵
diag() 是创建一个 NxN 的对角矩阵,对角矩阵是对角线上的主对角线之外的元素皆为 0 的矩阵。

import numpy as np
x7 = np.diag([1, 2, 3])
print(x7)

>>> 运行结果:

[[1 0 0]
 [0 2 0]
 [0 0 3]]

使用 random 创建随机数组

numpy 中的 random 中有很多内置函数,能简单介绍其中的几种。

import numpy as np
# 创建 2x2 数组且所有值是随机填充
x9 = np.random.random((2, 2))
print(x9)

# 创建一个值在 [0, 10) 区间的 3x3 的随机整数
x10 = np.random.randint(0, 10, (3, 3))
print(x10)

>>> 运行结果:

[[ 0.77233522  0.41516417]
 [ 0.22350126  0.31611254]]

[[0 6 5]
 [7 6 4]
 [5 5 9]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玖玖玖_violet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值