论文笔记:使用基于Attention的卷积神经网络进行12导联的心电异常的多分类检测

本文介绍了一种名为ATI-CNN的模型,专门针对生理信号处理,特别是12导联心电图的多类别异常检测。该模型结合CNN和RNN,利用Attention机制捕捉空间和时间信息。实验在心电挑战赛数据集上进行,显示了模型的高效性和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network


一、背景

心电数据往往存在者个体差异和噪音,给心率识别与分析带来很大困难。现有深度学习算法虽多,却没有专门为生理信号设计的模型,生理信号有以下几个特点:1.周期性波动,2.存在异常信号,3.现有12导联的心电数据提供了丰富的信息,如何利用信息的空间分布是个需要考虑的问题。

本文亮点:

  • 提出新颖的ATI-CNN模型,将心电数据处理分为两部分:用CNN捕捉空间信息,RNN捕捉时域信息,并基于Attention机制。
  • 开发循环单元的unwrapping ability来处理不定长的输入信号,不像传统CNN需要实现对信号进行补全和或截断,模型具有较好的鲁棒性。
  • 引入注意力机制,文章实验说明注意力在其中发挥的作用。

本文方法在第一届中国心电挑战赛的数据集上进行实验,对12导联心电数据进行9分类。

二、方法

模型结构如下:

在这里插入图片描述
在这里插入图片描述

每个CNN层下都接上BN和ReLU层。
所用Attention机制结构图如下:

在这里插入图片描述

这里文章没有给出计算公式,个人感觉不太好。
损失函数为:
l o s s ( X , r ) = − l o g

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值