一、背景
心电数据往往存在者个体差异和噪音,给心率识别与分析带来很大困难。现有深度学习算法虽多,却没有专门为生理信号设计的模型,生理信号有以下几个特点:1.周期性波动,2.存在异常信号,3.现有12导联的心电数据提供了丰富的信息,如何利用信息的空间分布是个需要考虑的问题。
本文亮点:
- 提出新颖的ATI-CNN模型,将心电数据处理分为两部分:用CNN捕捉空间信息,RNN捕捉时域信息,并基于Attention机制。
- 开发循环单元的unwrapping ability来处理不定长的输入信号,不像传统CNN需要实现对信号进行补全和或截断,模型具有较好的鲁棒性。
- 引入注意力机制,文章实验说明注意力在其中发挥的作用。
本文方法在第一届中国心电挑战赛的数据集上进行实验,对12导联心电数据进行9分类。
二、方法
模型结构如下:
![]() |
![]() |
---|
每个CNN层下都接上BN和ReLU层。
所用Attention机制结构图如下:
![]() |
---|
这里文章没有给出计算公式,个人感觉不太好。
损失函数为:
l o s s ( X , r ) = − l o g