Python算法
使用Python开发一些算法的应用程序
神精兵院院长
没什么可说的,遇见代码就发疯。。。
展开
-
【Python】神经网络回归预测模型,Python代码实现
基于物联网检测设备,大量采集流量数据和液位高度数据存储在时序数据库(influxdb)中。并采用下面代码对数据进行预测。原创 2024-06-21 22:25:34 · 496 阅读 · 0 评论 -
crc16算法python代码演示
【代码】crc16算法python代码演示。原创 2024-01-21 09:30:00 · 876 阅读 · 0 评论 -
【路径规划】二维Dijkstra启发式改进算法
我们使用了A*算法的启发式(曼哈顿距离)来改进Dijkstra算法的性能。当我们将邻居节点添加到优先队列时,我们使用了distance + heuristic作为优先级,这样我们可以更快地找到通往目标节点的路径。原创 2024-06-06 16:26:52 · 779 阅读 · 0 评论 -
【路径规划】A*算法基本原理
A算法在每次迭代时,都会从开放列表(OPEN表)中选择f值最小的节点作为下一个要扩展的节点,并更新该节点的邻居节点的信息。的原理主要基于启发式搜索,其核心在于通过结合当前节点的实际代价(g值)和到目标节点的估计代价(h值)来评估每个节点的总代价(f值),并据此选择下一个要扩展的节点1。此外,A*算法在每一步搜索时都需要计算节点的f值,并在OPEN表中维护节点的排序,因此对于大规模问题可能会面临计算量大和内存占用高的问题2。这通常通过计算从起始点到当前点的路径长度或者经过的节点数来确定1。原创 2024-06-06 16:37:17 · 213 阅读 · 0 评论 -
【路径规划】二维深度矩阵寻路算法
定义了一个find_path函数,它接受一个表示障碍物的矩阵和起点、终点坐标。函数使用深度优先搜索算法寻找一条从起点到终点的路径,并返回一个表示路径的坐标列表。在这个例子中,我们使用了numpy来创建和操作矩阵,并用简单的递归实现了DFS算法。**【注意】**没有考虑算法优化的问题。可能存在最大递归深度问题!使用numpy和简单的深度优先搜索(DFS)算法来解决矩阵寻路问题。原创 2024-06-06 16:31:17 · 1090 阅读 · 0 评论 -
【路径规划】三维深度矩阵寻路算法
首先,我们需要定义三维矩阵,并编写一个递归的DFS函数来寻找路径。注意,这个示例仅考虑了相邻的格子(上下左右前后)之间的移动,并且假设障碍物用1表示,可通行的格子用0表示。在三维空间中寻路相较于二维空间更为复杂,因为需要处理额外的维度。下面是一个示例,展示了如何使用深度优先搜索(DFS)算法在三维矩阵中寻找路径。【注意】如果遇到最大递归深度报错,请使用。原创 2024-06-06 16:34:36 · 1337 阅读 · 0 评论