纳什均衡

纳什均衡

如果对于所有参与人 i i i u i ( σ i ∗ , σ − i ∗ ) ≥ u i ( s i , σ − i ∗ ) ( s i ∈ S i ) u_i(\sigma_i^*,\sigma_{-i}^*)\ge u_i(s_i,\sigma_{-i}^*)\quad(s_i\in S_i) ui(σi,σi)ui(si,σi)(siSi)那么混合策略组合 σ ∗ \sigma^* σ是一种纳什均衡

严格纳什均衡

如果对于所有参与人 i i i u i ( s i ∗ , s − i ∗ ) ≥ u i ( s i , s − i ∗ ) ( s i ∈ S i ) u_i(s_i^*,s_{-i}^*)\ge u_i(s_i,s_{-i}^*)\quad(s_i\in S_i) ui(si,si)ui(si,si)(siSi)等号成立当且仅当 s i = s i ∗ s_i=s_i^* si=si
那么纯策略组合 σ ∗ \sigma^* σ是一种严格纳什均衡

纳什均衡计算方法

例1. 考虑以下鹰兔博弈,求所有纳什均衡

鹰兔博弈
纳什均衡的意义在于利益最大化,所以仅需将利益最大化时策略间的关系求出即可
x = σ 1 ( T ) , y = σ 2 ( T ) x=\sigma_1(T),y=\sigma_2(T) x=σ1(T),y=σ2(T),则 σ 1 ( W ) = 1 − x , σ 2 ( W ) = 1 − y \sigma_1(W)=1-x,\sigma_2(W)=1-y σ1(W)=1x,σ2(W)=1y,效用为 u 1 ( σ 1 ) = − x y + 2 x ( 1 − y ) + ( 1 − x ) y = x ( 2 − 4 y ) + y u_1(\sigma_1)=-xy+2x(1-y)+(1-x)y=x(2-4y)+y u1(σ1)=xy+2x(1y)+(1x)y=x(24y)+y对于 y &lt; 1 2 y&lt;\frac12 y<21 x = 1 x=1 x=1;对于 y &gt; 1 2 y&gt;\frac12 y>21 x = 0 x=0 x=0;对于 y = 1 2 y=\frac12 y=21 x ∈ [ 0 , 1 ] x\in[0,1] x[0,1] x = { 1 , 0 ≤ y &lt; 1 2 0 , 1 2 &lt; y ≤ 1 x ∈ [ 0 , 1 ] , y = 1 2 x=\begin{cases}1,&amp;0\le y&lt;\frac12\\0,&amp;\frac12&lt;y\le1\\x\in[0,1],&amp;y=\frac12\end{cases} x=1,0,x[0,1],0y<2121<y1y=21
同理得到参与人二的利益最大函数 y = { 1 , 0 ≤ x &lt; 1 2 0 , 1 2 &lt; x ≤ 1 y ∈ [ 0 , 1 ] , x = 1 2 y=\begin{cases}1,&amp;0\le x&lt;\frac12\\0,&amp;\frac12&lt;x\le1\\y\in[0,1],&amp;x=\frac12\end{cases} y=1,0,y[0,1],0x<2121<x1x=21
将两个函数绘制在一个坐标系中
曲线关系图
红色曲线为参与人一利益最大曲线,蓝色为参与人二利益最大曲线
不难看出有三个点两个参与人利益均最大,即 ( 0 , 1 ) , ( 1 , 0 ) , ( 1 2 , 1 2 ) (0,1),(1,0),(\frac12,\frac12) (0,1),(1,0),(21,21)
故此三个点对应的策略组合即为纳什均衡

例2. 在某地有两个产商垄断市场,分别生产 q 1 , q 2 q_1,q_2 q1,q2的商品。若市场价格与总产量 q = q 1 + q 2 q=q_1+q_2 q=q1+q2的关系为 p ( q ) p(q) p(q),第 i i i个厂商生产的单位成本为 c i ( q i ) c_i(q_i) ci(qi),每个产商会根据对方的产量调整自己的产量以是自己的利益最大化, p ( q ) = 1 − q p(q)=1-q p(q)=1q c i ( q i ) = c q i c_i(q_i)=cq_i ci(qi)=cqi c c c为常数),求两个产商最终稳定的产量(即求纳什均衡)

i i i个的厂商的利润为 u i = q i p ( q ) − c i ( q i ) u_i=q_ip(q)-c_i(q_i) ui=qip(q)ci(qi),由于利益最大,则 ∂ u i ∂ q i = q i p ′ ( q ) + p ( q ) − c i ′ ( q ) = 0 \frac{\partial u_i}{\partial q_i}=q_ip&#x27;(q)+p(q)-c_i&#x27;(q)=0 qiui=qip(q)+p(q)ci(q)=0代入 p ( q ) = 1 − q , c i ( q i ) = c q i p(q)=1-q,c_i(q_i)=cq_i p(q)=1q,ci(qi)=cqi得到 − q i + 1 − q − c = 0 -q_i+1-q-c=0 qi+1qc=0,即 q + q i = 1 − c q+q_i=1-c q+qi=1c,则 { 2 q 1 + q 2 = 1 − c q 1 + 2 q 2 = 1 − c \begin{cases}2q_1+q_2=1-c\\q_1+2q_2=1-c\end{cases} {2q1+q2=1cq1+2q2=1c解得 { q 1 = 1 − c 3 q 2 = 1 − c 3 \begin{cases}q_1=\frac{1-c}3\\q_2=\frac{1-c}3\end{cases} {q1=31cq2=31c

结合例题不难看出,纳什均衡的求解方法就是找出利益最大曲线,然后解出交点

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值