Luogu P5205 【模板】多项式开根

前言

自己做出一道多项式题,虽调试艰辛,但是AC后自豪感爆棚。

思路:

题目

B 2 ( x ) = A ( x ) ( m o d    x n ) , B^2(x)=A(x)(mod~~ x^n), B2(x)=A(x)(mod  xn),已知 A ( x ) A(x) A(x),求 B ( x ) B(x) B(x)

首先,给出一个牛顿迭代公式 x = x 0 − f ( x 0 ) f ′ ( x 0 ) x=x_0-\dfrac{f(x_0)}{f'(x_0)} x=x0f(x0)f(x0)( x x x为函数零点, x 0 x_0 x0为已知点)

f ( B ( x ) ) = B 2 ( x ) − A ( x ) , f(B(x))=B^2(x)-A(x), f(B(x))=B2(x)A(x),

f ′ ( B ( x ) ) = 2 ∗ B ( x ) f'(B(x))=2*B(x) f(B(x))=2B(x)

由于上面的定义,所以我们现在求的就是 f ( x ) f(x) f(x)的零点。

设已知 f ( B ∗ ( x ) ) = ( B ∗ ) 2 ( x ) − A ( x ) f(B^*(x))=(B^*)^2(x)-A(x) f(B(x))=(B)2(x)A(x), ( B ∗ ) (B^*) (B) m o d   x n / 2 mod~x^{n/2} mod xn/2时的多项式解
那么根据上面给出的牛迭公式可得: B ( x ) = ( B ∗ ) ( x ) − ( B ∗ ) 2 ( x ) − A ( x ) 2 ∗ ( B ∗ ) ( x ) = ( B ∗ ) ( x ) 2 + A ( x ) 2 ( B ∗ ) ( x ) B(x)=(B^*)(x)-\dfrac{(B^*)^2(x)-A(x)}{2*(B^*)(x)}=\dfrac{(B^*)(x)}{2}+\dfrac{A(x)}{2(B^*)(x)} B(x)=(B)(x)2(B)(x)(B)2(x)A(x)=2(B)(x)+2(B)(x)A(x)

综上: N T T NTT NTT求逆元 ∗ log ⁡ ( n ) *\log(n) log(n) 次迭代 B ( x ) B(x) B(x)即可,复杂度: O ( n ∗ log ⁡ n ) O(n*\log n) O(nlogn)

代码:

#include<cstdio
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1<<18|10,mod=998244353;
const int g=3,G=332748118,inv2=499122177;//原根3,3、2的逆元 
template<class o>void qr(o&x) {
	char c=getchar();int f=1;x=0;
	while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
	while(isdigit(c))x=x*10+c-'0',c=getchar();
	x*=f;
}
template<class o>void qw(o x) {
	if(x/10)qw(x/10);
	putchar(x%10+'0');
}
template<class o> void pr1(o x) {
	if(x<0)x=-x,putchar('-');
	qw(x); putchar(' ');
}

ll power(ll a,ll b=mod-2) {
	ll c=1;
	while(b) {
		if(b&1) c=c*a%mod;
		a=a*a%mod; b=b>>1;
	}
	return c;
}
int m,tr[N];
ll a[N],f[N],A[N],B[N],tmp[N];
//B(x)=(B*)(x)/2 + A(x)/(2*(B*(x))) 
//a为原题中的A,f用于存2(B*),B用于解逆元,tmp为临时数组 

void NTT(ll *f,int e,int n) {
	for(int i=1;i<n;i++)
		if(i<tr[i]) swap(f[i],f[tr[i]]);
	for(int p=2,len;p<=n;p<<=1) {
		len=p>>1;
		ll tg=power(e,(mod-1)/p),buf,t;
		for(int k=0;k<n;k+=p) {
			buf=1;
			for(int l=k;l<k+len;l++) {
				t=f[l+len]*buf%mod;
				f[l+len]=(f[l]-t+mod)%mod;
				f[l]=(f[l]+t)%mod;
				buf=buf*tg%mod;
			}
		}
	}
}

void mult(ll *a,ll *b,int n) {//两个多项式大小均为n——2的次幂
	for(int i=0;i<n;i++) tmp[i]=b[i];
	for(int i=n;i<2*n;i++) tmp[i]=0;
	n<<=1;
	for(int i=1;i<n;i++) tr[i]=(tr[i>>1]>>1)|(i&1?n>>1:0);
	NTT(a,g,n); NTT(tmp,g,n); 	 for(int i=0;i<n;i++) a[i]=a[i]*tmp[i]%mod;
	NTT(a,G,n); ll Inv=power(n); for(int i=0;i<n;i++) a[i]=a[i]*Inv %mod;
}

void inv(int n) {//求f的逆元——最后存到B中 
	B[0]=inv2;
	for(int i=1;i<n;i++) B[i]=0;
	for(int p=2,len;p<=n;p<<=1) {
		len=p>>1;
		for(int i=0;i<len;i++)
			A[i]=2*B[i]%mod;
		mult(B,B,len); mult(B,f,p);
		for(int i=0;i<p;i++) B[i]=(A[i]-B[i]+mod)%mod;
		for(int i=p;i<2*p;i++) B[i]=0;
	}
	for(int i=0;i<n;i++) A[i]=0;
}

void Sqrt() {
	f[0]=2;//(B*)(x)=1
	int n; for(n=1;n<=m;n<<=1);
	for(int p=2;p<=n;p<<=1) {
		inv(p);
		mult(B,a,p);
		for(int i=0;i<p;i++)
			f[i]=(f[i]*inv2+2LL*B[i])%mod;
	}
	for(int i=0;i<=m;i++) pr1(f[i]*inv2%mod);
	puts("");
}

int main() {
	qr(m); m--;
	for(int i=0,x;i<=m;i++) 
		qr(x),a[i]=x;
	Sqrt(); return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值