Description
Farmer John的奶牛最近收到一块大理石。但不幸的是,这块石头有些不完整。为了说明这块石头的状况,我们就可以用一个N*N正方形网格(5 <= N <=300)来描述,其中字符'*'代表石头的缺损部分,'.'表示石头完美无瑕的部分。
奶牛要在这一块大理石上雕刻数字“8”。然而,牛也需要FJ的帮助,以确定在这块大理石上最佳的雕刻位置。这里有几个要求来定义一个有效的数字8:
*数字8由上下两个矩形构成。
*数字8的上下两个矩形都满足至少有一个单元格在矩形内部,也就是说两个矩形都至少是3*3的。
*数字8顶部的矩形的底边必须为底部矩形顶边的子集。
*数字8只能刻在大理石完美无瑕的部分。
*规定数字8的得分为上矩形和下矩形的面积的乘积。
请确定奶牛所能构造的最大数字8.
Input
第1行:包含一个整数N,表示大理石的边长。
第2.. N+1行:第行描述的是大理石的第i-1行的状态,包含N个字符。其中字符'*'代表石头的缺损部分,'.'表示石头完美无瑕的部分
Output
输出仅一行,包含一个整数,表示所能得到的最大的数字8得分。
Sample Input
15 ............... ............... ...*******..... .*....*.......* .*......*....*. ....*.......... ...*...****.... ............... ..**.*..*..*... ...*...**.*.... *..*...*....... ............... .....*..*...... .........*..... ...............
Sample Output
3888
Data Constraint
5 <= N <=300
Hint
上面的矩形面积为6*9=54,下面的矩形面积为12*6,得分为54*72=3888
解析
我们发现数字8中间部分(上矩形的底部,下矩形的顶部)是一个划分线:
这让我们可以把问题划分为两个子问题。
上矩形部分
设 f[i,j,k] 为左边界为 i ,右边界为 j ,下边界为 k ,保证染色部分均为完美无瑕,的最大高度。
同时,我们可以计算出s[i,j,k]为此时的最大面积:
s[i,j,k] = (j - i - 1) * (f[i,j,k] - 2) if f[i,j,k] > 2
下矩形部分
与上矩形部分相似的,我们也可以定义一个下包围的结构,通过DP求出各个位置的值。
合并上下矩形
因为上矩形严格被下矩形包含,所以我们枚举下矩形的上边接,并通过辅助数组S[i,j,k] = max{s[x,y,k]} (i <= x <= y <= j),方便地求出下矩形地上边界确定时上矩形的下边界的最优值。
复杂度
时间复杂度O(N^3),空间复杂度O(N^3)
CODE(jie个也不是我的 =) )
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define N 301
using namespace std;
int n,bz,bz1;
long long ans;
char c;
int f[N][N][N],g[2][N][N];
bool map[N][N];
int a[N][N],b[N];
int main(){
scanf("%d",&n);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
scanf(" %c",&c),map[i][j]=(c=='.'),a[i][j]=a[i][j-1]+(map[i][j]^1);
for (int i=1;i<n;i++)
if (map[1][i])
for (int j=i+1;j<=n&&map[1][j];j++)
f[1][i][j]=1;
for (int i=2;i<=n;i++)
for (int j=1;j<n;j++)
for (int k=j+1;k<=n;k++)
if (!f[i-1][j][k]){
if (!(a[i][k]-a[i][j-1]))f[i][j][k]=i;
}else
if (map[i][j]&&map[i][k])
f[i][j][k]=f[i-1][j][k];
bz=0,bz1=1;
for (int i=1;i<=n;i++)
if (map[n][i])
for (int j=i+1;j<=n&&map[n][j];j++)
g[bz][i][j]=n;
for (int i=n-1;i;i--,bz^=1,bz1^=1){
for (int j=1;j<=n;j++)
b[j]=0;
for (int j=n-1;j;j--){
for (int k=j+1;k<=n;k++)
if (!(a[i][j]-a[i][k-1]))
b[k]=max(b[k],(i-f[i][j][k]-1)*(k-j-1));
for (int k=j+1;k<=n;k++)
b[k]=max(b[k-1],b[k]);
for (int k=j+1;k<=n;k++)
if (!g[bz][j][k]){
if (!(a[i][k]-a[i][j-1]))g[bz1][j][k]=i;
}else{
if (map[i][j]&&map[i][k]){
g[bz1][j][k]=g[bz][j][k];
if (!(a[i][k]-a[i][j-1]))
ans=max(ans,(long long)(g[bz1][j][k]-i-1)*(k-j-1)*b[k]);
}
g[bz][j][k]=0;
}
}
}
!ans?printf("-1"):printf("%lld",ans);
return 0;
}