jzoj 3235. 数字八

38 篇文章 0 订阅
32 篇文章 0 订阅

Description

Farmer John的奶牛最近收到一块大理石。但不幸的是,这块石头有些不完整。为了说明这块石头的状况,我们就可以用一个N*N正方形网格(5 <= N <=300)来描述,其中字符'*'代表石头的缺损部分,'.'表示石头完美无瑕的部分。

奶牛要在这一块大理石上雕刻数字“8”。然而,牛也需要FJ的帮助,以确定在这块大理石上最佳的雕刻位置。这里有几个要求来定义一个有效的数字8:

*数字8由上下两个矩形构成。

*数字8的上下两个矩形都满足至少有一个单元格在矩形内部,也就是说两个矩形都至少是3*3的。

*数字8顶部的矩形的底边必须为底部矩形顶边的子集。

*数字8只能刻在大理石完美无瑕的部分。

*规定数字8的得分为上矩形和下矩形的面积的乘积。

请确定奶牛所能构造的最大数字8.

Input

第1行:包含一个整数N,表示大理石的边长。

第2.. N+1行:第行描述的是大理石的第i-1行的状态,包含N个字符。其中字符'*'代表石头的缺损部分,'.'表示石头完美无瑕的部分

Output

输出仅一行,包含一个整数,表示所能得到的最大的数字8得分。

Sample Input

15

...............

...............

...*******.....

.*....*.......*

.*......*....*.

....*..........

...*...****....

...............

..**.*..*..*...

...*...**.*....

*..*...*.......

...............

.....*..*......

.........*.....

...............

Sample Output

3888

Data Constraint

5 <= N <=300

Hint



上面的矩形面积为6*9=54,下面的矩形面积为12*6,得分为54*72=3888

解析

我们发现数字8中间部分(上矩形的底部,下矩形的顶部)是一个划分线:

这让我们可以把问题划分为两个子问题。

上矩形部分 

设 f[i,j,k] 为左边界为 i ,右边界为 j ,下边界为 k ,保证染色部分均为完美无瑕,的最大高度。

                          

同时,我们可以计算出s[i,j,k]为此时的最大面积:

                            s[i,j,k] = (j - i - 1) * (f[i,j,k] - 2)    if f[i,j,k] > 2

下矩形部分

与上矩形部分相似的,我们也可以定义一个下包围的结构,通过DP求出各个位置的值。

合并上下矩形

因为上矩形严格被下矩形包含,所以我们枚举下矩形的上边接,并通过辅助数组S[i,j,k] = max{s[x,y,k]} (i <= x <= y <= j),方便地求出下矩形地上边界确定时上矩形的下边界的最优值。

复杂度

时间复杂度O(N^3),空间复杂度O(N^3)

CODE(jie个也不是我的 =) )

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define N 301
using namespace std;
int n,bz,bz1;
long long ans;
char c;
int f[N][N][N],g[2][N][N];
bool map[N][N];
int a[N][N],b[N];
int main(){
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
		for (int j=1;j<=n;j++)
			scanf(" %c",&c),map[i][j]=(c=='.'),a[i][j]=a[i][j-1]+(map[i][j]^1);
	for (int i=1;i<n;i++)
		if (map[1][i])
		for (int j=i+1;j<=n&&map[1][j];j++)
			f[1][i][j]=1;
	for (int i=2;i<=n;i++)
		for (int j=1;j<n;j++)
			for (int k=j+1;k<=n;k++)
				if (!f[i-1][j][k]){
					if (!(a[i][k]-a[i][j-1]))f[i][j][k]=i;
				}else
					if (map[i][j]&&map[i][k])
						f[i][j][k]=f[i-1][j][k];
	bz=0,bz1=1;
	for (int i=1;i<=n;i++)
		if (map[n][i])
			for (int j=i+1;j<=n&&map[n][j];j++)
				g[bz][i][j]=n;
	for (int i=n-1;i;i--,bz^=1,bz1^=1){
		for (int j=1;j<=n;j++)
			b[j]=0;
		for (int j=n-1;j;j--){
			for (int k=j+1;k<=n;k++)
				if (!(a[i][j]-a[i][k-1]))
					b[k]=max(b[k],(i-f[i][j][k]-1)*(k-j-1));
			for (int k=j+1;k<=n;k++)
				b[k]=max(b[k-1],b[k]);
			for (int k=j+1;k<=n;k++)
				if (!g[bz][j][k]){
					if (!(a[i][k]-a[i][j-1]))g[bz1][j][k]=i;
				}else{
					if (map[i][j]&&map[i][k]){
						g[bz1][j][k]=g[bz][j][k];
						if (!(a[i][k]-a[i][j-1]))
						ans=max(ans,(long long)(g[bz1][j][k]-i-1)*(k-j-1)*b[k]);
					}
					g[bz][j][k]=0;
				}
		}
	}
	!ans?printf("-1"):printf("%lld",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值