24考研数学每日一题2023年11月1日-2023年11月30日(带解析)


title: 24考研数学每日一题Latex版(带解析)
date: 2023-01-28 11:49:26
plugins:

  • mathjax
    tags:
  • 学习
  • 考研
    categories:
  • 考研数学

题目来源于武老师的每日一题,答案是自己做的,不太严谨,仅供参考
在这里插入图片描述

2022年11月1日

知识点:函数定义域

在这里插入图片描述
答案:
函数定义域是指自变量 x 的取值范围,不可以把 x + 1 作为自变量, x 才是自变量, 同一个 f ( ) ,括号内整体范围相同。由题意得 0 ⩽ x ⩽ a ⇒ 1 ⩽ x + 1 ⩽ a + 1 ,所以 f ( x ) 定义域为 [ 1 , a + 1 ] \text{函数定义域是指自变量}x\text{的取值范围,不可以把}x+1\text{作为自变量,}x\text{才是自变量,} \\ \text{同一个}f()\text{,括号内整体范围相同。由题意得}0\leqslant x\leqslant a\Rightarrow 1\leqslant x+1\leqslant a+1\text{,所以}f\left( x \right) \text{定义域为}\left[ 1,a+1 \right] 函数定义域是指自变量x的取值范围,不可以把x+1作为自变量,x才是自变量,同一个f(),括号内整体范围相同。由题意得0xa1x+1a+1,所以f(x)定义域为[1,a+1]

2022年11月2日

知识点:函数定义域

请添加图片描述
答案:
f [ φ ( x ) ] = 1 − x 2 , f ( x ) = e x 2 ⟹ e φ 2 ( x ) = 1 − x , 两边同时求 ln ⁡ , φ 2 ( x ) = ln ⁡ ( 1 − x ) 由题意得 φ ( x ) ≥ 0 , 两边开根号 , φ ( x ) = ln ⁡ ( 1 − x ) , 负半边不要了,只留正的。定义域: ln ⁡ ( 1 − x ) ≥ 0 ⇒ 1 − x ≥ 1 ⇒ x ≤ 0 f\left[ \varphi \left( x \right) \right] =1-x^2,f\left( x \right) ={e^x}^{^2}\Longrightarrow e^{\varphi ^2\left( x \right)}=1-x,\text{两边同时求}\ln ,\varphi ^2\left( x \right) =\ln \left( 1-x \right) \\ \text{由题意得}\varphi \left( x \right) \ge 0,\text{两边开根号},\varphi \left( x \right) =\sqrt{\ln \left( 1-x \right)},\text{负半边不要了,只留正的。定义域:}\ln \left( 1-x \right) \ge 0\Rightarrow 1-x\ge 1\Rightarrow x\le 0 f[φ(x)]=1x2,f(x)=ex2eφ2(x)=1x,两边同时求ln,φ2(x)=ln(1x)由题意得φ(x)0,两边开根号,φ(x)=ln(1x) ,负半边不要了,只留正的。定义域:ln(1x)01x1x0

2022年11月3日

知识点:复合函数

在这里插入图片描述
答案:

g ( x ) = { 2 − x , x ≤ 0 x + 2 , x ≥ 0 , f ( x ) = { x 2 , x < 0 − x , x ≥ 0 , f ( x ) 是 g ( x ) 的复合函数 x 2 , x < 0 但是 x 2 > 0 , − x , x ≥ 0 但是 − x < 0 , 所以 g [ f ( x ) ] = { 2 + x , x ≥ 0 x 2 + 2 , x < 0 , 注意 x 的取值,与 f ( x ) 的取值是一致的 g\left( x \right) =\begin{cases} 2-x, x\le 0\\ x+2,x\ge 0\\ \end{cases},f\left( x \right) =\begin{cases} x^2, x<0\\ -x,x\ge 0\\ \end{cases},f\left( x \right) \text{是}g\left( x \right) \text{的复合函数} \\ x^2,x<0\text{但是}x^2>0,-x,x\ge 0\text{但是}-x<0,\text{所以}g\left[ f\left( x \right) \right] =\begin{cases} 2+x^{}, x\ge 0\\ x^2+2,x<0\\ \end{cases},\text{注意}x\text{的取值,与}f\left( x \right) \text{的取值是一致的} g(x)={2x,x0x+2,x0,f(x)={x2,x<0x,x0,f(x)g(x)的复合函数x2,x<0但是x2>0,x,x0但是x<0,所以g[f(x)]={2+x,x0x2+2,x<0,注意x的取值,与f(x)的取值是一致的

2022年11月4日

知识点:反函数

在这里插入图片描述
答案:

把 f ( x ) 分段拆开来看 , 当 x < − 1 , y = 1 − 2 x 2 ⇒ x = ± 1 − y 2 , 因为 x < − 1 , x = − 1 − y 2 , x = − 1 时 , y = − 1 , 所以 x = − 1 − y 2 , y < − 1 。 当 − 1 ≤ x ≤ 2 时 , y = x 3 ⇒ x = y 3 , 当 x = − 1 时 , y = − 1 , 当 x = 2 时 , y = 8 所以 x = y 3 , − 1 ≤ y ≤ 8 。 当 x > 2 时 , y = 12 x − 16 ⇒ x = y + 16 12 , x = 2 , y = 8 , 所以 x = y + 16 12 , y > 8 。 把 y 换成 x , g ( x ) = { − 1 − x 2 , x < − 1 x 3 , − 1 ≤ x ≤ 8 x + 16 12 , x > 8 \text{把}f\left( x \right) \text{分段拆开来看},\text{当}x<-1,y=1-2x^2\Rightarrow x=\pm \sqrt{\frac{1-y}{2}},\text{因为}x<-1,x=-\sqrt{\frac{1-y}{2}},x=-1\text{时},y=-1,\text{所以}x=-\sqrt{\frac{1-y}{2}},y<-1\text{。} \\ \text{当}-1\le x\le 2\text{时},y=x^3\Rightarrow x=\sqrt[3]{y},\text{当}x=-1\text{时},y=-1,\text{当}x=2\text{时},y=8\text{所以}x=\sqrt[3]{y},-1\le y\le 8\text{。} \\ \text{当}x>2\text{时},y=12x-16\Rightarrow x=\frac{y+16}{12},x=2,y=8,\text{所以}x=\frac{y+16}{12},y>8\text{。} \\ \text{把}y\text{换成}x,g\left( x \right) =\left\{ \begin{array}{c} -\sqrt{\frac{1-x}{2}},x<-1\\ \sqrt[3]{x},-1\le x\le 8\\ \frac{x+16}{12},x>8\\ \end{array} \right. f(x)分段拆开来看,x<1,y=12x2x=±21y ,因为x<1,x=21y ,x=1,y=1,所以x=21y ,y<11x2,y=x3x=3y ,x=1,y=1,x=2,y=8所以x=3y ,1y8x>2,y=12x16x=12y+16,x=2,y=8,所以x=12y+16,y>8y换成x,g(x)= 21x ,x<13x ,1x812x+16,x>8

2022年11月5日

知识点:函数奇偶性

重点

在这里插入图片描述
答案:

设 h ( x ) 为奇函数, g ( x ) 为偶函数可以使 f ( x ) = h ( x ) + g ( x ) 成立, h ( − x ) = − h ( x ) , g ( − x ) = g ( x ) f ( − x ) = h ( − x ) + g ( − x ) = − h ( x ) + g ( x ) , { f ( x ) = h ( x ) + g ( x ) f ( − x ) = − h ( x ) + g ( x ) ⇒ g ( x ) = 1 2 [ f ( x ) + f ( − x ) ] ( x 与 − x 互换等式结果一样,偶函数 ) , h ( x ) = 1 2 [ f ( x ) − f ( − x ) ] ( x 与 − x 互换等式结果一样,奇函数 ) \text{设}h\left( x \right) \text{为奇函数,}g\left( x \right) \text{为偶函数可以使}f\left( x \right) =h\left( x \right) +g\left( x \right) \text{成立,}h\left( -x \right) =-h\left( x \right) ,g\left( -x \right) =g\left( x \right) \\ f\left( -x \right) =h\left( -x \right) +g\left( -x \right) =-h\left( x \right) +g\left( x \right) ,\left\{ \begin{array}{c} f\left( x \right) =h\left( x \right) +g\left( x \right)\\ f\left( -x \right) =-h\left( x \right) +g\left( x \right)\\ \end{array}\Rightarrow g\left( x \right) =\frac{1}{2}\left[ f\left( x \right) +f\left( -x \right) \right] \left( x\text{与}-x\text{互换等式结果一样,偶函数} \right) ,h\left( x \right) =\frac{1}{2}\left[ f\left( x \right) -f\left( -x \right) \right] \left( x\text{与}-x\text{互换等式结果一样,奇函数} \right) \right. h(x)为奇函数,g(x)为偶函数可以使f(x)=h(x)+g(x)成立,h(x)=h(x),g(x)=g(x)f(x)=h(x)+g(x)=h(x)+g(x),{f(x)=h(x)+g(x)f(x)=h(x)+g(x)g(x)=21[f(x)+f(x)](xx互换等式结果一样,偶函数),h(x)=21[f(x)f(x)](xx互换等式结果一样,奇函数)

2022年11月6日

知识点:函数基本性质

在这里插入图片描述
答案:

f ( − x ) = − x tan ⁡ ( − x ) ⋅ e sin ⁡ − x = x tan ⁡ x ⋅ e − sin ⁡ x , f ( x ) ≠ f ( x ) , A 错 e sin ⁡ x 为周期函数, tan ⁡ x 为周期函数, x 单调递增,相乘后不是周期函数, C 错 x , tan ⁡ x 在 ( − π 2 , π 2 ) 上单调递增, e sin ⁡ x 为周期函数,则 f ( x ) 不是单调函数, D 错,证明出 B 正确 f\left( -x \right) =-x\tan \left( -x \right) \cdot e^{\sin -x}=x\tan x\cdot e^{-\sin x},f\left( x \right) \ne f\left( x \right) ,A\text{错} \\ e^{\sin x}\text{为周期函数,}\tan x\text{为周期函数,}x\text{单调递增,相乘后不是周期函数,}C\text{错} \\ x,\tan x\text{在}\left( -\frac{\pi}{2},\frac{\pi}{2} \right) \text{上单调递增,}e^{\sin x}\text{为周期函数,则}f\left( x \right) \text{不是单调函数,}D\text{错,证明出}B\text{正确} f(x)=xtan(x)esinx=xtanxesinx,f(x)=f(x),Aesinx为周期函数,tanx为周期函数,x单调递增,相乘后不是周期函数,Cx,tanx(2π,2π)上单调递增,esinx为周期函数,则f(x)不是单调函数,D错,证明出B正确

2022年11月7日

知识点:函数的有界性

在这里插入图片描述
答案:

lim ⁡ x → − 1 f ( x ) = − sin ⁡ 3 − 1 ⋅ − 2 ⋅ 9 = sin ⁡ 3 18 , lim ⁡ x → 0 − f ( x ) = sin ⁡ 2 − 4 , A 正确 lim ⁡ x → 0 + f ( x ) = sin ⁡ 2 4 , lim ⁡ x → 1 − f ( x ) = 1 x − 1 ⋅ − sin ⁡ 1 = − ∞ , B 错 lim ⁡ x → 1 + f ( x ) = 1 x − 1 ⋅ − sin ⁡ 1 = + ∞ , lim ⁡ x → 2 − f ( x ) = 1 x − 2 = − ∞ , C 错 lim ⁡ x → 2 + f ( x ) = 1 x − 2 = + ∞ , lim ⁡ x → 3 f ( x ) = sin ⁡ 1 2 , D 错 \lim_{x\rightarrow -1} f\left( x \right) =\frac{-\sin 3}{-1\cdot -2\cdot 9}=\frac{\sin 3}{18},\lim_{x\rightarrow 0^-} f\left( x \right) =\frac{\sin 2}{-4},A\text{正确} \\ \lim_{x\rightarrow 0^+} f\left( x \right) =\frac{\sin 2}{4},\lim_{x\rightarrow 1^-} f\left( x \right) =\frac{1}{x-1}\cdot -\sin 1=-\infty ,B\text{错} \\ \lim_{x\rightarrow 1^+} f\left( x \right) =\frac{1}{x-1}\cdot -\sin 1=+\infty ,\lim_{x\rightarrow 2^-} f\left( x \right) =\frac{1}{x-2}=-\infty ,C\text{错} \\ \lim_{x\rightarrow 2^+} f\left( x \right) =\frac{1}{x-2}=+\infty \text{,}\lim_{x\rightarrow 3} f\left( x \right) =\frac{\sin 1}{2},D\text{错} x1limf(x)=129sin3=18sin3,x0limf(x)=4sin2,A正确x0+limf(x)=4sin2,x1limf(x)=x11sin1=,Bx1+limf(x)=x11sin1=+,x2limf(x)=x21=,Cx2+limf(x)=x21=+x3limf(x)=2sin1,D

2022年11月8日

知识点:极限的计算

在这里插入图片描述
原式 = lim ⁡ n → ∞ [ 1 + 2 + . . . + n − 1 + 2 + . . . + ( n − 1 ) ] = lim ⁡ n → ∞ [ n ( 1 + n ) 2 − ( 1 + n − 1 ) n 2 ] = lim ⁡ n → ∞ [ n ( 1 + n ) 2 − n 2 2 ] = lim ⁡ n → ∞ [ n + n 2 − n 2 2 n ( 1 + n ) 2 + n 2 2 ] = 2 lim ⁡ n → ∞ [ 1 1 + 1 n + 1 ] = 2 2 \begin{aligned} \text{原式}& =\lim_{n\rightarrow \infty} \left[ \sqrt{1+2+...+n}-\sqrt{1+2+...+\left( n-1 \right)} \right] \\ & =\lim_{n\rightarrow \infty} \left[ \sqrt{\frac{n\left( 1+n \right)}{2}}-\sqrt{\frac{\left( 1+n-1 \right) n}{2}} \right] \\ & =\lim_{n\rightarrow \infty} \left[ \sqrt{\frac{n\left( 1+n \right)}{2}}-\sqrt{\frac{n^2}{2}} \right] \\ & =\lim_{n\rightarrow \infty} \left[ \frac{\frac{n+n^2-n^2}{2}}{\sqrt{\frac{n\left( 1+n \right)}{2}}+\sqrt{\frac{n^2}{2}}} \right] \\ & =\sqrt{2}\lim_{n\rightarrow \infty} \left[ \frac{1}{\sqrt{1+\frac{1}{n}}+\sqrt{1}} \right] \\ & =\frac{\sqrt{2}}{2} \end{aligned} 原式=nlim[1+2+...+n 1+2+...+(n1) ]=nlim[2n(1+n) 2(1+n1)n ]=nlim[2n(1+n) 2n2 ]=nlim 2n(1+n) +2n2 2n+n2n2 =2 nlim 1+n1 +1 1 =22

2022年11月9日

知识点:极限的计算

注意根号下x的平方,在x<0时,得到的值是负值

在这里插入图片描述
答案:

法一(直接法):

原式 = lim ⁡ x → − ∞ ( − x ) [ 4 + 1 x − 1 x 2 − 1 − 1 x ] ( − x ) 1 + sin ⁡ x x 2 = lim ⁡ x → − ∞ 4 + 1 x − 1 x 2 − 1 − 1 x 1 + sin ⁡ x x 2 ( x < 0 , x 2 < 0 ) = 1 \begin{aligned} \text{原式}& =\lim_{x\rightarrow -\infty} \frac{\left( -x \right) \left[ \sqrt{4+\frac{1}{x}-\frac{1}{x^2}}-1-\frac{1}{x} \right]}{\left( -x \right) \sqrt{1+\frac{\sin x}{x^2}}} \\ & =\lim_{x\rightarrow -\infty} \frac{\sqrt{4+\frac{1}{x}-\frac{1}{x^2}}-1-\frac{1}{x}}{\sqrt{1+\frac{\sin x}{x^2}}}\left( x<0,\sqrt{x^2}<0 \right) \\ & =1 \end{aligned} 原式=xlim(x)1+x2sinx (x)[4+x1x21 1x1]=xlim1+x2sinx 4+x1x21 1x1(x<0,x2 <0)=1

法二(抓大头):
原式 = lim ⁡ x → − ∞ 4 x 2 + x x 2 = lim ⁡ x → − ∞ − 2 x + x − x = 1 \begin{aligned} \text{原式}& =\lim_{x\rightarrow -\infty} \frac{\sqrt{4x^2}+x}{\sqrt{x^2}} \\ & =\lim_{x\rightarrow -\infty} \frac{-2x+x}{-x} \\ & =1 \end{aligned} 原式=xlimx2 4x2 +x=xlimx2x+x=1

2022年11月10日

知识点:判别左右极限

在这里插入图片描述
答案:

原式 = lim ⁡ x → 0 + ( 2 + e 1 x 1 + e 4 x + sin ⁡ x ∣ x ∣ ) = lim ⁡ x → 0 + ( 0 + 1 )    ( e 4 x 比 e 1 x 增长快 ) = 1 原式 = lim ⁡ x → 0 − ( 2 + e 1 x 1 + e 4 x + sin ⁡ x ∣ x ∣ ) = lim ⁡ x → 0 − ( 2 + 0 1 + 0 + sin ⁡ x − x ) = ( 2 − 1 ) = 1 lim ⁡ x → 0 + 左 = lim ⁡ x → 0 − 右 = 1 \begin{aligned} \text{原式}& =\lim_{x\rightarrow 0^+} \left( \frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}}+\frac{\sin x}{\left| x \right|} \right) \\ & =\lim_{x\rightarrow 0^+} \left( 0+1 \right) \,\, \left( e^{\frac{4}{x}}\text{比}e^{\frac{1}{x}}\text{增长快} \right) \\ & =1 \\ \text{原式}& =\lim_{x\rightarrow 0^-} \left( \frac{2+e^{\frac{1}{x}}}{1+e^{\frac{4}{x}}}+\frac{\sin x}{\left| x \right|} \right) \\ & =\lim_{x\rightarrow 0^-} \left( \frac{2+0}{1+0}+\frac{\sin x}{-x} \right) \\ & =\left( 2-1 \right) \\ & =1 \\ \lim_{x\rightarrow 0^+} \text{左}&=\lim_{x\rightarrow 0^-} \text{右}=1 \end{aligned} 原式原式x0+lim=x0+lim(1+ex42+ex1+xsinx)=x0+lim(0+1)(ex4ex1增长快)=1=x0lim(1+ex42+ex1+xsinx)=x0lim(1+02+0+xsinx)=(21)=1=x0lim=1

2022年11月11日

知识点:四种方法计算极限

在这里插入图片描述
答案:

法一(直接法):
法一:原式 = lim ⁡ x → ∞ ( x 2 + x − x 2 + x x 2 + x + x 2 − x ) = lim ⁡ x → ∞ ( 2 x x 2 + x + x 2 − x ) = lim ⁡ x → ∞ ( 2 1 + 1 x + 1 − 1 x ) = 1 \begin{aligned} \text{法一:原式}&=\lim_{x\rightarrow \infty} \left( \frac{x^2+x-x^2+x}{\sqrt{x^2+x}+\sqrt{x^2-x}} \right) \\ &=\lim_{x\rightarrow \infty} \left( \frac{2x}{\sqrt{x^2+x}+\sqrt{x^2-x}} \right) \\ &=\lim_{x\rightarrow \infty} \left( \frac{2}{\sqrt{1+\frac{1}{x}}+\sqrt{1-\frac{1}{x}}} \right) \\ &=1 \end{aligned} 法一:原式=xlim(x2+x +x2x x2+xx2+x)=xlim(x2+x +x2x 2x)=xlim 1+x1 +1x1 2 =1
法二(拉格朗日):
法二:设 f ( x ) = x 根据拉格朗日中值定理, f ( x 2 + x ) − f ( x 2 − x ) = f ′ ( ξ ) ( x 2 + x − x 2 + x ) = 2 x f ′ ( ξ ) , ξ 介于 x 2 + x 与 x 2 − x 之间, ξ ∼ x 2 , f ′ ( ξ ) = 1 2 ξ 原式 = lim ⁡ x → ∞ 2 x f ′ ( ξ ) = lim ⁡ x → ∞ x ξ = 1 \text{法二:设}f\left( x \right) =\sqrt{x} \\ \text{根据拉格朗日中值定理,}f\left( x^2+x \right) -f\left( x^2-x \right) =f\prime\left( \xi \right) \left( x^2+x-x^2+x \right) =2xf\prime\left( \xi \right) \text{,}\xi \text{介于}x^2+x\text{与}x^2-x\text{之间,}\xi \sim x^2,f\prime\left( \xi \right) =\frac{1}{2\sqrt{\xi}} \\ \text{原式}=\lim_{x\rightarrow \infty} 2xf\prime\left( \xi \right) =\lim_{x\rightarrow \infty} \frac{x}{\sqrt{\xi}}=1 法二:设f(x)=x 根据拉格朗日中值定理,f(x2+x)f(x2x)=f(ξ)(x2+xx2+x)=2xf(ξ)ξ介于x2+xx2x之间,ξx2,f(ξ)=2ξ 1原式=xlim2xf(ξ)=xlimξ x=1
法三(常见等价无穷小):
法三:原式 = lim ⁡ x → ∞ x 2 − x [ 1 + 2 x x 2 − x − 1 ] = lim ⁡ x → ∞ x 2 − x ⋅ 1 2 ⋅ 2 x x 2 − x = 1 \begin{aligned} \text{法三:原式}&=\lim_{x\rightarrow \infty} \sqrt{x^2-x}\left[ \sqrt{1+\frac{2x}{x^2-x}}-1 \right] \\ &=\lim_{x\rightarrow \infty} \sqrt{x^2-x}\cdot \frac{1}{2}\cdot \frac{2x}{x^2-x} \\ &=1 \end{aligned} 法三:原式=xlimx2x [1+x2x2x 1]=xlimx2x 21x2x2x=1
法四(等价无穷小相减,减项不等价的话,可以用等价无穷小减):
法四:原式 = lim ⁡ x → ∞ x ( 1 + 1 x − 1 − 1 x ) = lim ⁡ x → ∞ x ( ( 1 + 1 x − 1 ) − ( 1 − 1 x − 1 ) ) = lim ⁡ x → ∞ x ( 1 2 x + 1 2 x ) = 1 \begin{aligned} \text{法四:原式}&=\lim_{x\rightarrow \infty} x\left( \sqrt{1+\frac{1}{x}}-\sqrt{1-\frac{1}{x}} \right) \\ &=\lim_{x\rightarrow \infty} x\left( \left( \sqrt{1+\frac{1}{x}}-1 \right) -\left( \sqrt{1-\frac{1}{x}}-1 \right) \right) \\ &=\lim_{x\rightarrow \infty} x\left( \frac{1}{2x}+\frac{1}{2x} \right) \\ &=1 \end{aligned} 法四:原式=xlimx(1+x1 1x1 )=xlimx((1+x1 1)(1x1 1))=xlimx(2x1+2x1)=1

2022年11月12日

知识点:三种方法计算极限

在这里插入图片描述
答案:

法一(直接法):
法一:原式 = lim ⁡ x → 0 1 + tan ⁡ x − 1 − sin ⁡ x x ( 1 − cos ⁡ ) ( 1 + tan ⁡ x + 1 + sin ⁡ x ) = lim ⁡ x → 0 tan ⁡ x − sin ⁡ x 1 2 x 3 ⋅ 2 = lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 x + x 3 3 − ( x − x 3 6 ) + o ( x ) x 3 = 1 2 \begin{aligned} \text{法一:原式}&=\lim_{x\rightarrow 0} \frac{1+\tan x-1-\sin x}{x\left( 1-\cos \right) \left( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right)} \\ &=\lim_{x\rightarrow 0} \frac{\tan x-\sin x}{\frac{1}{2}x^3\cdot 2} \\ &=\lim_{x\rightarrow 0} \frac{\tan x-\sin x}{x^3} \\ &=\lim_{x\rightarrow 0} \frac{x+\frac{x^3}{3}-\left( x-\frac{x^3}{6} \right) +o\left( x \right)}{x^3} \\ &=\frac{1}{2} \end{aligned} 法一:原式=x0limx(1cos)(1+tanx +1+sinx )1+tanx1sinx=x0lim21x32tanxsinx=x0limx3tanxsinx=x0limx3x+3x3(x6x3)+o(x)=21

法二(拉格朗日中值定理):
法二:设 f ( x ) = x ,根据拉格朗日中值定理, f ( 1 + tan ⁡ x ) − f ( 1 + sin ⁡ x ) = f ′ ( ξ ) ( tan ⁡ x − sin ⁡ x ) 原式 = lim ⁡ x → 0 f ′ ( ξ ) ( tan ⁡ x − sin ⁡ x ) 1 2 x 3 ξ 在 1 + tan ⁡ x 与 1 + sin ⁡ x 之间, x 趋于 0 , 1 + tan ⁡ x 与 1 + sin ⁡ x 都趋于 0 ,根据夹逼定理, ξ ∼ 1 原式 = lim ⁡ x → 0 1 2 ( tan ⁡ x − sin ⁡ x ) 1 2 x 3 = lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 x + x 3 3 − ( x − x 3 6 ) + o ( x ) x 3 = 1 2 \text{法二:设}f\left( x \right) =\sqrt{x}\text{,根据拉格朗日中值定理,}f\left( 1+\tan x \right) -f\left( 1+\sin x \right) =f\prime\left( \xi \right) \left( \tan x-\sin x \right) \\ \text{原式}=\lim_{x\rightarrow 0} \frac{f\prime\left( \xi \right) \left( \tan x-\sin x \right)}{\frac{1}{2}x^3} \\ \xi \text{在}1+\tan x\text{与}1+\sin x\text{之间,}x\text{趋于}0\text{,}1+\tan x\text{与}1+\sin x\text{都趋于}0\text{,根据夹逼定理,}\xi \sim 1 \\ \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \frac{\frac{1}{2}\left( \tan x-\sin x \right)}{\frac{1}{2}x^3} \\ &=\lim_{x\rightarrow 0} \frac{\tan x-\sin x}{x^3} \\ &=\lim_{x\rightarrow 0} \frac{x+\frac{x^3}{3}-\left( x-\frac{x^3}{6} \right) +o\left( x \right)}{x^3} \\ &=\frac{1}{2} \end{aligned} 法二:设f(x)=x ,根据拉格朗日中值定理,f(1+tanx)f(1+sinx)=f(ξ)(tanxsinx)原式=x0lim21x3f(ξ)(tanxsinx)ξ1+tanx1+sinx之间,x趋于01+tanx1+sinx都趋于0,根据夹逼定理,ξ1原式=x0lim21x321(tanxsinx)=x0limx3tanxsinx=x0limx3x+3x3(x6x3)+o(x)=21
法三(等价无穷小):
法三:原式 = lim ⁡ x → 0 1 + tan ⁡ x − 1 + sin ⁡ x 1 2 x 3 = lim ⁡ x → 0 tan ⁡ x + 1 − 1 − ( 1 + sin ⁡ x − 1 ) 1 2 x 3 = lim ⁡ x → 0 1 2 tan ⁡ x − 1 2 sin ⁡ x 1 2 x 3 = lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 x + x 3 3 − ( x − x 3 6 ) + o ( x ) x 3 = 1 2 \begin{aligned} \text{法三:原式}&=\lim_{x\rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{\frac{1}{2}x^3} \\ &=\lim_{x\rightarrow 0} \frac{\sqrt{\tan x+1}-1-\left( \sqrt{1+\sin x}-1 \right)}{\frac{1}{2}x^3} \\ &=\lim_{x\rightarrow 0} \frac{\frac{1}{2}\tan x-\frac{1}{2}\sin x}{\frac{1}{2}x^3} \\ &=\lim_{x\rightarrow 0} \frac{\tan x-\sin x}{x^3} \\ &=\lim_{x\rightarrow 0} \frac{x+\frac{x^3}{3}-\left( x-\frac{x^3}{6} \right) +o\left( x \right)}{x^3} \\ &=\frac{1}{2} \end{aligned} 法三:原式=x0lim21x31+tanx 1+sinx =x0lim21x3tanx+1 1(1+sinx 1)=x0lim21x321tanx21sinx=x0limx3tanxsinx=x0limx3x+3x3(x6x3)+o(x)=21

2022年11月13日

知识点:求极限确定参数

在这里插入图片描述
答案:
法一(直接法):
原式 = lim ⁡ x → 0 e x 2 − 1 − ( c o s 2 x − 1 ) a x b = lim ⁡ x → 0 x 2 + 2 x 2 a x b = lim ⁡ x → 0 3 x 2 a x b = 1 所以 a = 3 , b = 2 \begin{aligned} 原式&=\lim_{x \to 0 } \frac{e^{x^{2}}-1-(cos2x-1) }{ax^{b}} \\ &=\lim_{x \to 0 } \frac{x^{2}+2x^{2} }{ax^{b}} \\ &= \lim_{x \to 0 } \frac{3x^{2} }{ax^{b}}=1 \\ 所以a&=3,b=2 \end{aligned} 原式所以a=x0limaxbex21(cos2x1)=x0limaxbx2+2x2=x0limaxb3x2=1=3,b=2
法二(泰勒公式):
原式 = lim ⁡ x → 0 ( 1 + x 2 ) − ( 1 − 2 x 2 ) a x b = lim ⁡ x → 0 3 x 2 a x b = 1 所以 a = 3 , b = 2 \begin{aligned} 原式&=\lim_{x \to 0 } \frac{(1+x^{2} )-(1-2x^{2} ) }{ax^{b}} \\ &=\lim_{x \to 0 } \frac{3x^{2} }{ax^{b}}=1 \\ 所以a&=3,b=2 \end{aligned} 原式所以a=x0limaxb(1+x2)(12x2)=x0limaxb3x2=1=3,b=2

2022年11月14日

知识点:等价无穷小

在这里插入图片描述
答案:

x → 0 , φ ( x ) = 0 , A 错,若要满足 A B C D , φ ( x ) 不能为 0 可以认为极端情况 φ ( x ) ≡ 0 ,都错,假如加上条件 φ ( x ) ≠ 0 则都对 书上的条件是 lim ⁡ Δ → 0 sin ⁡ Δ Δ = 1 ,做这种题要注意 φ ( x ) 的取值 x\rightarrow 0,\varphi \left( x \right) =0,A\text{错,若要满足}ABCD\text{,}\varphi \left( x \right) \text{不能为}0 \\ \text{可以认为极端情况}\varphi \left( x \right) \equiv 0\text{,都错,假如加上条件}\varphi \left( x \right) \ne 0\text{则都对} \\ \text{书上的条件是}\lim_{\varDelta \rightarrow 0} \frac{\sin \varDelta}{\varDelta}=1\text{,做这种题要注意}\varphi \left( x \right) \text{的取值} x0,φ(x)=0,A错,若要满足ABCDφ(x)不能为0可以认为极端情况φ(x)0,都错,假如加上条件φ(x)=0则都对书上的条件是Δ0limΔsinΔ=1,做这种题要注意φ(x)的取值

2022年11月15日

知识点:求极限

在这里插入图片描述
答案:

原式 = lim ⁡ x → 0 x + x 3 6 − ( x − x 3 3 ) x − x 3 6 − ( x + x 3 3 ) = lim ⁡ x → 0 x 3 2 − x 3 2 = − 1 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \frac{x+\frac{x^3}{6}-\left( x-\frac{x^3}{3} \right)}{x-\frac{x^3}{6}-\left( x+\frac{x^3}{3} \right)} \\ &=\lim_{x\rightarrow 0} \frac{\frac{x^3}{2}}{-\frac{x^3}{2}} \\ &=-1 \end{aligned} 原式=x0limx6x3(x+3x3)x+6x3(x3x3)=x0lim2x32x3=1

2022年11月16日

知识点:求极限

在这里插入图片描述
答案:
法一(直接法):
原式 = lim ⁡ x → 0 ln ⁡ x ln ⁡ ( 1 + x ) + 1 − 1 x = lim ⁡ x → 0 x ln ⁡ ( 1 + x ) − 1 x = lim ⁡ x → 0 x − ln ⁡ ( 1 + x ) ln ⁡ ( 1 + x ) x = lim ⁡ x → 0 x − ln ⁡ ( 1 + x ) x ln ⁡ ( 1 + x ) = lim ⁡ x → 0 x − ( x − x 2 2 ) x 2 = lim ⁡ x → 0 x 2 2 x 2 = 1 2 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \frac{\ln \frac{x}{\ln \left( 1+x \right)}+1-1}{x} \\ &=\lim_{x\rightarrow 0} \frac{\frac{x}{\ln \left( 1+x \right)}-1}{x} \\ &=\lim_{x\rightarrow 0} \frac{\frac{x-\ln \left( 1+x \right)}{\ln \left( 1+x \right)}}{x} \\ &=\lim_{x\rightarrow 0} \frac{x-\ln \left( 1+x \right)}{x\ln \left( 1+x \right)} \\ &=\lim_{x\rightarrow 0} \frac{x-\left( x-\frac{x^2}{2} \right)}{x^2} \\ &=\lim_{x\rightarrow 0} \frac{\frac{x^2}{2}}{x^2} \\ &=\frac{1}{2} \end{aligned} 原式=x0limxlnln(1+x)x+11=x0limxln(1+x)x1=x0limxln(1+x)xln(1+x)=x0limxln(1+x)xln(1+x)=x0limx2x(x2x2)=x0limx22x2=21
法二(拉格朗日中值定理):
原式 = lim ⁡ x → 0 ln ⁡ x − ln ⁡ ( ln ⁡ ( 1 + x ) ) x , 设 f ( x ) = ln ⁡ x , 由拉格朗日中值定理得 f ( x ) − f ( ln ⁡ ( 1 + x ) ) = f ′ ( ξ ) ( x − ln ⁡ ( 1 + x ) ) ξ x 介于 x x 与 ln ⁡ ( x + 1 ) x 之间, x 趋于 0 , x x → 1 , ln ⁡ ( 1 + x ) x → 1 , ξ x → 1 , 原式 = lim ⁡ x → 0 f ′ ( ξ ) ( x − ln ⁡ ( 1 + x ) ) x = lim ⁡ x → 0 x 2 2 ξ x = 1 2 lim ⁡ x → 0 x ξ = 1 x \text{原式}=\lim_{x\rightarrow 0} \frac{\ln x-\ln \left( \ln \left( 1+x \right) \right)}{x},\text{设}f\left( x \right) =\ln x,\text{由拉格朗日中值定理得}f\left( x \right) -f\left( \ln \left( 1+x \right) \right) =f\prime\left( \xi \right) \left( x-\ln \left( 1+x \right) \right) \\ \frac{\xi}{x}\text{介于}\frac{x}{x}\text{与}\frac{\ln \left( x+1 \right)}{x}\text{之间,}x\text{趋于}0,\frac{x}{x}\rightarrow 1,\frac{\ln \left( 1+x \right)}{x}\rightarrow 1\text{,}\frac{\xi}{x}\rightarrow 1,\text{原式}=\lim_{x\rightarrow 0} \frac{f\prime\left( \xi \right) \left( x-\ln \left( 1+x \right) \right)}{x}=\lim_{x\rightarrow 0} \frac{\frac{x^2}{2}}{\xi x}=\frac{1}{2}\lim_{x\rightarrow 0} \frac{x}{\xi}=\frac{1}{x} 原式=x0limxlnxln(ln(1+x)),f(x)=lnx,由拉格朗日中值定理得f(x)f(ln(1+x))=f(ξ)(xln(1+x))xξ介于xxxln(x+1)之间,x趋于0,xx1,xln(1+x)1xξ1,原式=x0limxf(ξ)(xln(1+x))=x0limξx2x2=21x0limξx=x1

2022年11月17日

知识点:小心经错标零

在这里插入图片描述
答案:
原式 = lim ⁡ x → ∞ e x e x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ e x − x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ e x 2 ( 1 x − ln ⁡ ( 1 + 1 x ) ) = e 1 2 \begin{aligned} \text{原式}&=\lim_{x\rightarrow \infty} \frac{e^x}{{e^x}^{^2\ln \left( 1+\frac{1}{x} \right)}} \\ &=\lim_{x\rightarrow \infty} e^{x-x^2\ln \left( 1+\frac{1}{x} \right)} \\ &=\lim_{x\rightarrow \infty} e^{x^2\left( \frac{1}{x}-\ln \left( 1+\frac{1}{x} \right) \right)} \\ &=e^{\frac{1}{2}} \end{aligned} 原式=xlimex2ln(1+x1)ex=xlimexx2ln(1+x1)=xlimex2(x1ln(1+x1))=e21
有二级结论 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 \text{有二级结论}x-\ln \left( 1+x \right) \sim \frac{1}{2}x^2 有二级结论xln(1+x)21x2

2022年11月18日

知识点:求极限

在这里插入图片描述
答案:
设 f ( x ) = cos ⁡ x , f ( x ) − f ( sin ⁡ x ) = f ′ ( ξ ) ( x − sin ⁡ x ) , ξ 介于 x 与 sin ⁡ x 之间 , 所以 ξ → 0 原式 = lim ⁡ x → 0 f ′ ( ξ ) ( x − sin ⁡ x ) x 4 = lim ⁡ x → 0 − sin ⁡ ξ ( x − sin ⁡ x ) x 4 = − lim ⁡ x → 0 x − sin ⁡ x x 3 = − lim ⁡ x → 0 1 6 x 3 x 3 = − 1 6 \begin{aligned} \text{设}f\left( x \right) &=\cos x,f\left( x \right) -f\left( \sin x \right) =f\prime\left( \xi \right) \left( x-\sin x \right) ,\xi \text{介于}x\text{与}\sin x\text{之间},\text{所以}\xi \rightarrow 0 \\ \text{原式}&=\lim_{x\rightarrow 0} \frac{f\prime\left( \xi \right) \left( x-\sin x \right)}{x^4} \\ &=\lim_{x\rightarrow 0} \frac{-\sin \xi \left( x-\sin x \right)}{x^4} \\ &=-\lim_{x\rightarrow 0} \frac{x-\sin x}{x^3} \\ &=-\lim_{x\rightarrow 0} \frac{\frac{1}{6}x^3}{x^3} \\ &=-\frac{1}{6} \end{aligned} f(x)原式=cosx,f(x)f(sinx)=f(ξ)(xsinx),ξ介于xsinx之间,所以ξ0=x0limx4f(ξ)(xsinx)=x0limx4sinξ(xsinx)=x0limx3xsinx=x0limx361x3=61

2022年11月19日

知识点:求极限(偶数年真题)

在这里插入图片描述
答案:
设 f ( x ) = a r c t a n x , f ( x + 1 ) − f ( x ) = f ′ ( ξ ) ( x + 1 − x ) , f ′ ( ξ ) = 1 1 + ξ 2 , ξ 介于 x 与 x + 1 之间, x → ∞ , ξ → ∞ 原式 = lim ⁡ x → ∞ x 2 [ f ′ ( ξ ) ] = lim ⁡ x → ∞ x 2 1 + ξ 2 = 1 \begin{aligned} 设f(x)&=arctanx,f(x+1)-f(x)=f\prime (\xi )(x+1-x),f\prime (\xi )=\frac{1}{1+\xi^2} , \xi 介于x与x+1之间,x\rightarrow \infty ,\xi \rightarrow \infty \\ 原式&=\lim_{x \to\infty }x^2[f\prime (\xi )] \\ &=\lim_{x \to\infty }\frac{x^2}{1+\xi ^2} \\ &=1 \end{aligned} f(x)原式=arctanx,f(x+1)f(x)=f(ξ)(x+1x),f(ξ)=1+ξ21,ξ介于xx+1之间,x,ξ=xlimx2[f(ξ)]=xlim1+ξ2x2=1

2022年11月20日

知识点:求极限(这道题不会真说不过去了)

在这里插入图片描述
答案:

设 f ( x ) = a r c tan ⁡ x , f ( a n ) − f ( a n + 1 ) = f ′ ( ξ ) ( a n − a n + 1 ) , ξ 介于 a n 与 a n + 1 之间 , n → ∞ , a n → 0 , a n + 1 → 0 , ξ → 0 原式 = lim ⁡ n → ∞ n 2 [ 1 1 + ξ 2 ( a n + a − a n n ( n + 1 ) ) ] = lim ⁡ n → ∞ n 2 [ a n 2 + n ] = lim ⁡ n → ∞ a 1 + 1 n = a \begin{aligned} \text{设}f\left( x \right)& =arc\tan x,f\left( \frac{a}{n} \right) -f\left( \frac{a}{n+1} \right) =f\prime\left( \xi \right) \left( \frac{a}{n}-\frac{a}{n+1} \right) ,\xi \text{介于}\frac{a}{n}\text{与}\frac{a}{n+1}\text{之间},n\rightarrow \infty ,\frac{a}{n}\rightarrow 0,\frac{a}{n+1}\rightarrow 0,\xi \rightarrow 0 \\ \text{原式}&=\lim_{n\rightarrow \infty} n^2\left[ \frac{1}{1+\xi ^2}\left( \frac{an+a-an}{n\left( n+1 \right)} \right) \right] \\ &=\lim_{n\rightarrow \infty} n^2\left[ \frac{a}{n^2+n} \right] \\ &=\lim_{n\rightarrow \infty} \frac{a}{1+\frac{1}{n}} \\ &=a \end{aligned} f(x)原式=arctanx,f(na)f(n+1a)=f(ξ)(nan+1a),ξ介于nan+1a之间,n,na0,n+1a0,ξ0=nlimn2[1+ξ21(n(n+1)an+aan)]=nlimn2[n2+na]=nlim1+n1a=a

2022年11月21日

知识点:求极限(今天你拉格朗日了吗)

在这里插入图片描述
设 f ( x ) = sin ⁡ x , f ( x + 1 ) − f ( x ) = f ′ ( ξ ) ( x + 1 − x ) = f ′ ( ξ ) , ξ 在 x , x + 1 之间, x → ∞ , ξ → ∞ 原式 = lim ⁡ x → ∞ f ′ ( ξ ) = lim ⁡ x → ∞ cos ⁡ ξ 2 ξ = 0 \begin{aligned} \text{设}f\left( x \right) &=\sin \sqrt{x},f\left( x+1 \right) -f\left( x \right) =f\prime\left( \xi \right) \left( x+1-x \right) =f\prime\left( \xi \right) ,\xi \text{在}x,x+1\text{之间,}x\rightarrow \infty ,\xi \rightarrow \infty \\ \text{原式}&=\lim_{x\rightarrow \infty} f\prime\left( \xi \right) \\ &=\lim_{x\rightarrow \infty} \frac{\cos \sqrt{\xi}}{2\sqrt{\xi}} \\ &=0 \end{aligned} f(x)原式=sinx ,f(x+1)f(x)=f(ξ)(x+1x)=f(ξ),ξx,x+1之间,x,ξ=xlimf(ξ)=xlim2ξ cosξ =0

2022年11月22日

知识点:求极限

重点

在这里插入图片描述
答案:
法一(泰勒公式):

原式 = lim ⁡ x → 0 [ ln ⁡ ( 1 + tan ⁡ 2 x ) − ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + tan ⁡ 2 x ) ] = lim ⁡ x → 0 [ ( tan ⁡ x − x ) ( tan ⁡ x + x ) x 4 ] = lim ⁡ x → 0 [ ( x + x 3 3 − x ) ( 2 x ) x 4 ] = 2 3 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \left[ \frac{\ln \left( 1+\tan ^2x \right) -\ln \left( 1+x^2 \right)}{\ln \left( 1+x^2 \right) \ln \left( 1+\tan ^2x^{} \right)} \right] \\ &=\lim_{x\rightarrow 0} \left[ \frac{\left( \tan x-x \right) \left( \tan x+x \right)}{x^4} \right] \\ &=\lim_{x\rightarrow 0} \left[ \frac{\left( x+\frac{x^3}{3}-x \right) \left( 2x \right)}{x^4} \right] \\ &=\frac{2}{3} \end{aligned} 原式=x0lim[ln(1+x2)ln(1+tan2x)ln(1+tan2x)ln(1+x2)]=x0lim[x4(tanxx)(tanx+x)]=x0lim x4(x+3x3x)(2x) =32
法二(拉格朗日中值定理):

原式 = lim ⁡ x → 0 [ ln ⁡ ( 1 + tan ⁡ 2 x ) − ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + tan ⁡ 2 x ) ] , 设 f ( x ) = ln ⁡ x , f ( 1 + tan ⁡ 2 x ) − f ( 1 + x 2 ) = f ′ ( ξ ) ( tan ⁡ 2 x − x 2 ) = lim ⁡ x → 0 [ 1 ξ ( tan ⁡ 2 x − x 2 ) ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + tan ⁡ 2 x ) ] , ξ 介于 1 + tan ⁡ 2 x 与 1 + x 2 之间, x → 0 , ξ → 1 = lim ⁡ x → 0 [ ( tan ⁡ x − x ) ( tan ⁡ x + x ) x 4 ] = lim ⁡ x → 0 [ ( x + x 3 3 − x ) ( 2 x ) x 4 ] = 2 3 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \left[ \frac{\ln \left( 1+\tan ^2x \right) -\ln \left( 1+x^2 \right)}{\ln \left( 1+x^2 \right) \ln \left( 1+\tan ^2x^{} \right)} \right] ,\text{设}f\left( x \right) =\ln x,f\left( 1+\tan ^2x \right) -f\left( 1+x^2 \right) =f\prime\left( \xi \right) \left( \tan ^2x-x^2 \right) \\ &=\lim_{x\rightarrow 0} \left[ \frac{\frac{1}{\xi}\left( \tan ^2x-x^2 \right)}{\ln \left( 1+x^2 \right) \ln \left( 1+\tan ^2x^{} \right)} \right] ,\xi \text{介于}1+\tan ^2x\text{与}1+x^2\text{之间,}x\rightarrow 0,\xi \rightarrow 1 \\ &=\lim_{x\rightarrow 0} \left[ \frac{\left( \tan x-x \right) \left( \tan x+x \right)}{x^4} \right] \\ &=\lim_{x\rightarrow 0} \left[ \frac{\left( x+\frac{x^3}{3}-x \right) \left( 2x \right)}{x^4} \right] \\ &=\frac{2}{3} \end{aligned} 原式=x0lim[ln(1+x2)ln(1+tan2x)ln(1+tan2x)ln(1+x2)],f(x)=lnx,f(1+tan2x)f(1+x2)=f(ξ)(tan2xx2)=x0lim[ln(1+x2)ln(1+tan2x)ξ1(tan2xx2)],ξ介于1+tan2x1+x2之间,x0,ξ1=x0lim[x4(tanxx)(tanx+x)]=x0lim x4(x+3x3x)(2x) =32

2022年11月23日

知识点:求极限

重点

在这里插入图片描述
答案:

原式 = lim ⁡ x → 0 [ sin ⁡ 2 x − ln ⁡ ( 1 + x 2 ) ln ⁡ ( 1 + x 2 ) sin ⁡ 2 x ] = lim ⁡ x → 0 [ sin ⁡ 2 x − x 2 + x 2 − ln ⁡ ( 1 + x 2 ) x 4 ] = lim ⁡ x → 0 ( sin ⁡ 2 x − x 2 ) + 1 2 x 4 x 4 = lim ⁡ x → 0 ( sin ⁡ x − x ) ( sin ⁡ x + x ) x 4 + lim ⁡ x → 0 1 2 x 4 x 4 = lim ⁡ x → 0 2 x ⋅ − 1 6 x 3 x 4 + lim ⁡ x → 0 1 2 x 4 x 4 = − 1 3 + 1 2 = 1 6 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} \left[ \frac{\sin ^2x-\ln \left( 1+x^2 \right)}{\ln \left( 1+x^2 \right) \sin ^2x} \right] \\ &=\lim_{x\rightarrow 0} \left[ \frac{\sin ^2x-x^2+x^2-\ln \left( 1+x^2 \right)}{x^4} \right] \\ &=\lim_{x\rightarrow 0} \frac{\left( \sin ^2x-x^2 \right) +\frac{1}{2}x^4}{x^4} \\ &=\lim_{x\rightarrow 0} \frac{\left( \sin x-x \right) \left( \sin x+x \right)}{x^4}+\lim_{x\rightarrow 0} \frac{\frac{1}{2}x^4}{x^4} \\ &=\lim_{x\rightarrow 0} \frac{2x\cdot -\frac{1}{6}x^3}{x^4}+\lim_{x\rightarrow 0} \frac{\frac{1}{2}x^4}{x^4} \\ &=-\frac{1}{3}+\frac{1}{2} \\ &=\frac{1}{6} \end{aligned} 原式=x0lim[ln(1+x2)sin2xsin2xln(1+x2)]=x0lim[x4sin2xx2+x2ln(1+x2)]=x0limx4(sin2xx2)+21x4=x0limx4(sinxx)(sinx+x)+x0limx421x4=x0limx42x61x3+x0limx421x4=31+21=61

2022年11月24日

知识点:求极限

在这里插入图片描述
答案(洛必达):

原式 = lim ⁡ x → 0 e 2 x ln ⁡ ( x + 2 x ) = e lim ⁡ x → 0 2 ln ⁡ ( x + 2 x ) x = e lim ⁡ x → 0 2 ( 1 + 2 x ln ⁡ 2 x + 2 x ) = e 2 + 2 ln ⁡ 2 = e 2 ⋅ 4 = 4 e 2 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} e^{\frac{2}{x}\ln \left( x+2^x \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{2\ln \left( x+2^x \right)}{x}} \\ &=e^{\lim_{x\rightarrow 0} 2\left( \frac{1+2^x\ln 2}{x+2^x} \right)} \\ &=e^{2+2\ln 2} \\ &=e^2\cdot 4 \\ &=4e^2 \end{aligned} 原式=x0limex2ln(x+2x)=elimx0x2ln(x+2x)=elimx02(x+2x1+2xln2)=e2+2ln2=e24=4e2

2022年11月25日

知识点:求极限

d在这里插入图片描述
答案:
原式 = lim ⁡ x → 0 e 1 sin ⁡ k x ln ⁡ ( 1 − tan ⁡ x 1 + tan ⁡ x ) = lim ⁡ x → 0 e 1 sin ⁡ k x ln ⁡ ( 1 + tan ⁡ x − 2 tan ⁡ x 1 + tan ⁡ x ) = e lim ⁡ x → 0 1 sin ⁡ k x ln ⁡ ( 1 − 2 tan ⁡ x 1 + tan ⁡ x ) = e lim ⁡ x → 0 − 1 sin ⁡ k x ⋅ 2 tan ⁡ x 1 + tan ⁡ x = e lim ⁡ x → 0 − 2 tan ⁡ x ( 1 + tan ⁡ x ) sin ⁡ k x = e lim ⁡ x → 0 − 2 tan ⁡ x sin ⁡ k x = e , 所以 − 2 tan ⁡ x sin ⁡ k x = 1 , k = − 2 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} e^{\frac{1}{\sin kx}\ln \left( \frac{1-\tan x}{1+\tan x} \right)} \\ &=\lim_{x\rightarrow 0} e^{\frac{1}{\sin kx}\ln \left( \frac{1+\tan x-2\tan x}{1+\tan x} \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{1}{\sin kx}\ln \left( 1-\frac{2\tan x}{1+\tan x} \right)} \\ &=e^{\lim_{x\rightarrow 0} -\frac{1}{\sin kx}\cdot \frac{2\tan x}{1+\tan x}} \\ &=e^{\lim_{x\rightarrow 0} \frac{-2\tan x}{\left( 1+\tan x \right) \sin kx}} \\ &=e^{\lim_{x\rightarrow 0} \frac{-2\tan x}{\sin kx}} \\ &=e,\text{所以}\frac{-2\tan x}{\sin kx}=1,k=-2 \end{aligned} 原式=x0limesinkx1ln(1+tanx1tanx)=x0limesinkx1ln(1+tanx1+tanx2tanx)=elimx0sinkx1ln(11+tanx2tanx)=elimx0sinkx11+tanx2tanx=elimx0(1+tanx)sinkx2tanx=elimx0sinkx2tanx=e,所以sinkx2tanx=1,k=2

2022年11月26日

知识点:求极限(1的无穷次方型)

泰勒

在这里插入图片描述

原式 = e lim ⁡ x → 0 1 x 2 ln ⁡ ( e x + a x 2 + b x ) = e lim ⁡ x → 0 1 x 2 ln ⁡ ( e x + a x 2 + b x + 1 − 1 ) = e lim ⁡ x → 0 e x + a x 2 + b x − 1 x 2 = e lim ⁡ x → 0 1 + x + x 2 2 + a x 2 + b x − 1 x 2 = e lim ⁡ x → 0 ( a + 1 2 ) x 2 + ( b + 1 ) x x 2 = 1 , 所以 a = − 1 2 , b = − 1 \begin{aligned} \text{原式}&=e^{\lim_{x\rightarrow 0} \frac{1}{x^2}\ln \left( e^x+ax^2+bx \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{1}{x^2}\ln \left( e^x+ax^2+bx+1-1 \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{e^x+ax^2+bx-1}{x^2}} \\ &=e^{\lim_{x\rightarrow 0} \frac{1+x+\frac{x^2}{2}+ax^2+bx-1}{x^2}} \\ &=e^{\lim_{x\rightarrow 0} \frac{\left( a+\frac{1}{2} \right) x^2+\left( b+1 \right) x}{x^2}} \\ &=1,\text{所以}a=-\frac{1}{2},b=-1 \end{aligned} 原式=elimx0x21ln(ex+ax2+bx)=elimx0x21ln(ex+ax2+bx+11)=elimx0x2ex+ax2+bx1=elimx0x21+x+2x2+ax2+bx1=elimx0x2(a+21)x2+(b+1)x=1,所以a=21,b=1

2022年11月27日

知识点:求极限(1的无穷次方型)

在这里插入图片描述
答案:

原式 = lim ⁡ x → 0 e 1 1 − cos ⁡ x ln ⁡ ( a r c tan ⁡ x x ) = e lim ⁡ x → 0 1 1 − cos ⁡ x ln ⁡ ( a r c tan ⁡ x x ) = e lim ⁡ x → 0 1 1 − cos ⁡ x ln ⁡ ( a r c tan ⁡ x − x x + 1 ) = e lim ⁡ x → 0 a r c tan ⁡ x − x ( 1 − cos ⁡ x ) x = e lim ⁡ x → 0 − 1 3 x 3 1 2 x 3 = e − 2 3 \begin{aligned} \text{原式}&=\lim_{x\rightarrow 0} e^{\frac{1}{1-\cos x}\ln \left( \frac{\mathrm{arc}\tan x}{x} \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{1}{1-\cos x}\ln \left( \frac{\mathrm{arc}\tan x}{x} \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{1}{1-\cos x}\ln \left( \frac{\mathrm{arc}\tan x-x}{x}+1 \right)} \\ &=e^{\lim_{x\rightarrow 0} \frac{\mathrm{arc}\tan x-x}{\left( 1-\cos x \right) x}} \\ &=e^{\lim_{x\rightarrow 0} \frac{-\frac{1}{3}x^3}{\frac{1}{2}x^3}} \\ &=e^{-\frac{2}{3}} \end{aligned} 原式=x0lime1cosx1ln(xarctanx)=elimx01cosx1ln(xarctanx)=elimx01cosx1ln(xarctanxx+1)=elimx0(1cosx)xarctanxx=elimx021x331x3=e32

2022年11月28日

知识点:求极限(1的无穷次方型)

n替换u

在这里插入图片描述

设 u = 1 n , n → ∞ , u → 0 原式 = lim ⁡ u → 0 ( 1 u tan ⁡ u ) 1 u 2 = e lim ⁡ u → 0 1 u 2 ln ⁡ ( tan ⁡ u − u u + 1 ) = e lim ⁡ u → 0 tan ⁡ u − u u 3 = e 1 3 \begin{aligned} \text{设}u=&\frac{1}{n},n\rightarrow \infty ,u\rightarrow 0 \\ \text{原式}=&\lim_{u\rightarrow 0} \left( \frac{1}{u}\tan u \right) ^{\frac{1}{u^2}} \\ &=e^{\lim_{u\rightarrow 0} \frac{1}{u^2}\ln \left( \frac{\tan u-u}{u}+1 \right)} \\ &=e^{\lim_{u\rightarrow 0} \frac{\tan u-u}{u^3}} \\ &=e^{\frac{1}{3}} \end{aligned} u=原式=n1,n,u0u0lim(u1tanu)u21=elimu0u21ln(utanuu+1)=elimu0u3tanuu=e31

2022年11月29日

知识点:求极限(1的无穷次方型)

在这里插入图片描述
答案:
原式 = lim ⁡ n → ∞ ( 1 + tan ⁡ 1 n 1 − tan ⁡ 1 n ) n = e lim ⁡ n → ∞ n ln ⁡ ( 1 + tan ⁡ 1 n 1 − tan ⁡ 1 n ) = e lim ⁡ n → ∞ n ln ⁡ ( 1 − tan ⁡ 1 n + 2 tan ⁡ 1 n 1 − tan ⁡ 1 n ) = e lim ⁡ n → ∞ n ln ⁡ ( 1 + 2 tan ⁡ 1 n 1 − tan ⁡ 1 n ) = e lim ⁡ n → ∞ 2 n tan ⁡ 1 n 1 − tan ⁡ 1 n = e 2 \begin{aligned} \text{原式}&=\lim_{n\rightarrow \infty} \left( \frac{1+\tan \frac{1}{n}}{1-\tan \frac{1}{n}} \right) ^n \\ &=e^{\lim_{n\rightarrow \infty} n\ln \left( \frac{1+\tan \frac{1}{n}}{1-\tan \frac{1}{n}} \right)} \\ &=e^{\lim_{n\rightarrow \infty} n\ln \left( \frac{1-\tan \frac{1}{n}+2\tan \frac{1}{n}}{1-\tan \frac{1}{n}} \right)} \\ &=e^{\lim_{n\rightarrow \infty} n\ln \left( 1+\frac{2\tan \frac{1}{n}}{1-\tan \frac{1}{n}} \right)} \\ &=e^{\lim_{n\rightarrow \infty} \frac{2n\tan \frac{1}{n}}{1-\tan \frac{1}{n}}} \\ &=e^2 \end{aligned} 原式=nlim(1tann11+tann1)n=elimnnln(1tann11+tann1)=elimnnln(1tann11tann1+2tann1)=elimnnln(1+1tann12tann1)=elimn1tann12ntann1=e2

2022年11月30日

知识点:求极限(1的无穷次方型)

在这里插入图片描述
答案:
原式 = lim ⁡ x → 0 e 1 e x − 1 l n ( l n ( 1 + x ) x ) − 1 + 1 = lim ⁡ x → 0 e 1 e x − 1 ( l n ( 1 + x ) x − 1 ) = lim ⁡ x → 0 e 1 e x − 1 ( l n ( 1 + x ) − x x ) = lim ⁡ x → 0 e 1 x ( − 1 2 x ) = e − 1 2 \begin{aligned} 原式&=\lim_{x \to 0} e^{\frac{1}{e^x-1}ln(\frac{ln(1+x)}{x} )-1+1 } \\ &=\lim_{x \to 0} e^{\frac{1}{e^x-1}(\frac{ln(1+x)}{x} -1) } \\ &=\lim_{x \to 0}e^{\frac{1}{e^x-1}(\frac{ln(1+x)-x}{x} ) } \\ &=\lim_{x \to 0}e^{\frac{1}{x}(-\frac{1}{2}x ) } \\ &=e^{-\frac{1}{2} } \end{aligned} 原式=x0limeex11ln(xln(1+x))1+1=x0limeex11(xln(1+x)1)=x0limeex11(xln(1+x)x)=x0limex1(21x)=e21

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sol-itude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值