需求和应用场景
比如说,我现在即将要完成一个功能场景:
- 通过爬虫爬取各个单位发布的有关 Python工程师的信息,
这些发布的职位信息包括了:公司名称 | 所处位置 | 薪资待遇;例如:
阿里巴巴 | 杭州市 | 1.8-2.1万/月- 将已有的信息进行数据可视化,我想要得到不同省的Python职位的平均薪资水平,所以我需要将 杭州–> 浙江省,因为城市太多,不利于统计。
- 进行数据可视化
那么为了实现这个功能,我们用以下代码来实现,调用高德地图的 API 接口
代码
import requests
import json
def parse_city_info(position):
position = position.split('-')[0] # 对数据进行处理
# print(postion)
return position
def attain_province_info(position):
key = '自己去申请'
url = 'https://restapi.amap.com/v3/geocode/geo?address=%s&key=%s'% (position,key)
text = requests.get(url).text
diction_data = json.loads(text) # 把text的str数据转换成字典数据
province = diction_data['geocodes'][0]['province'] # 通过高德地图返回的数据和字典的索引找到我们想要的省信息
return province
if __name__ == '__main__':
position_lst = ['上海市-静安区','北京市-海淀区','青岛市-市南区','章丘','枣庄市'] #给出一系列不同等级地区的列表
position_lst = [parse_city_info(position) for position in position_lst]
print(position_lst)
province_lst = [attain_province_info(position) for position in position_lst]
print(province_lst)