离散数学知识点总结(5):蕴含式;命题的推理理论;逻辑推演的方法;推理的有效性证明

前情回顾

  • p → q p \rightarrow q pq 这叫做单条件蕴含,它的等价式为 ¬ p ∨ q ¬p \vee q ¬pq (这是较小的层面,是 clause 层面的关系)

蕴含式 ⊨ \models ⇒ \Rightarrow

如果现在有两个合式公式 (这是较大的层面,两个合式公式之间的关系)

  • A : ( a 1 ∨ a 2 ) ∧ ( a 3 ∨ a 4 ) . . . ( a n ∨ a n + 1 ) A:(a_1\vee a_2) \wedge(a_3 \vee a_4) ...(a_n\vee a_{n+1}) A:(a1a2)(a3a4)...(anan+1)
  • B : ( b 1 ∨ b 2 ) ∧ ( b 3 ∨ b 4 ) . . . ( b n ∨ b n + 1 ) B:(b_1\vee b_2) \wedge(b_3 \vee b_4) ...(b_n\vee b_{n+1}) B:(b1b2)(b3b4)...(bnbn+1)
  • 如果能证明 A → B A \rightarrow B AB 是个永真式,那么我们可以说 A ⇒ B A \Rightarrow B AB (A 蕴含 B),或者表示为 A ⊨ B A \models B AB,这个式子 A ⊨ B A \models B AB 成为蕴含式,也叫做 永真的条件式; 此时, A A A 称为蕴含式的前提(前件) B B B 称为蕴含式的结论(后件)

蕴含式和等价式的关系( ≡ \equiv ⇔ \Leftrightarrow

A ≡ B A\equiv B AB 相当于 A ⊨ B A \models B AB B ⊨ A B \models A BA

  • 注意,这里用的是 “且”,而不是 ∧ \wedge 因为这是公式之间的关系,而不是子句之间的关系,不能用逻辑联结词。
  • 等价式和蕴含式,都不是公式,因为他们表示的是不同公式之间的关系!!!!

证明蕴含式的方法

  • 要证明 A ⊨ B A⊨B AB 就证明 A → B A\rightarrow B AB 是重言式(tautology);可以通过真值表
  • 逻辑推演:证明蕴含关系要用逻辑推演。

逻辑推演的方法

  • 前件真推后件真
  • 后件假推前件假
    在这里插入图片描述
    Example
    在这里插入图片描述

逻辑推演使用的 9 个基本蕴含式

  • 证明蕴含关系的基本方法:真值表法 、逻辑推演法。
  • 逻辑推演法在上面我们也做了简单的展示;除了直接分析公式的真假之外,我们引入了 9 个基本的蕴含式;可以帮助进行逻辑推演**(就像在命题逻辑的等值演算一样,可以通过公式的替换来简化证明过程)**
基本蕴含式公式解释
附加律 A ⊨ ( A ∨ B ) A \models (A \vee B) A(AB) A A A 是真, A ∨ B A \vee B AB 一定为真,满足前真推后真
化简律 ( A ∧ B ) ⊨ A (A\wedge B) \models A (AB)A A A A 是假, A ∧ B A \wedge B AB 一定为假,满足后假推前假
假言推理 ( A → B ) ∧ A ⊨ B (A \rightarrow B) \wedge A \models B (AB)AB ( A → B ) (A \rightarrow B) (AB) 是真的, A A A 也是真的,所以 B B B 必须是真的
拒取式 ( A → B ) ∧ ¬ B ⊨ ¬ A (A \rightarrow B) \wedge ¬ B \models ¬ A (AB)¬B¬A ( A → B ) (A \rightarrow B) (AB) 是真的, ¬ B ¬ B ¬B 也是真的, B B B 是假的,因此 A A A 一定也是假的
析取三段论 ( A ∨ B ) ∧ ¬ B ⊨ A (A \vee B) \wedge ¬ B \models A (AB)¬BA B B B 是假的, ( A ∨ B ) (A \vee B) (AB) 是真的,所以 A A A 一定是真的
假言三段论 ( A → B ) ∧ ( B → C ) ⊨ ( A → C ) (A \rightarrow B) \wedge( B \rightarrow C)\models (A\rightarrow C) (AB)(BC)(AC)单条件蕴含的传递性
等价三断论 ( A ↔ B ) ∧ ( B ↔ C ) ⊨ ( A ↔ C ) (A \leftrightarrow B) \wedge (B \leftrightarrow C) \models (A\leftrightarrow C) (AB)(BC)(AC)双条件蕴含的传递性
构造性二难推理 ( A → B ) ∧ ( C → D ) ∧ ( A ∨ C ) ⊨ ( B ∨ D ) (A \rightarrow B) \wedge ( C \rightarrow D) \wedge (A \vee C) \models (B\vee D) (AB)(CD)(AC)(BD) A , C A,C A,C 中至少有一个是真的,而且 ( A → B ) , ( C → D ) (A→B), (C→D) (AB),(CD) 都是真的,因此 B , D B, D B,D 有一个是真的, A A A 如果是真的,那么 C C C 就是真的,如果 B B B 是真的,那么 D D D 就是真的; A , C A,C A,C 都真,则 B , D B,D B,D 都真
破坏性二难推理 ( A → B ) ∧ ( C → D ) ∧ ( ¬ B ∨ ¬ D ) ⊨ ( ¬ A ∨ ¬ C ) (A \rightarrow B) \wedge ( C \rightarrow D) \wedge (¬B \vee ¬D) \models (¬A \vee ¬C) (AB)(CD)(¬B¬D)(¬A¬C) B , D B, D B,D 至少有一个是假的,因此, A , C A,C A,C 中至少有一个是假的(结合 ( A → B ) , ( C → D ) (A→B), (C→D) (AB),(CD) 的真值表)

推理的有效性证明

在这里插入图片描述

有效论证

假设 A 1 , A 2 , . . . A n A_1,A_2,...A_n A1,A2,...An 都是命题公式, B B B 也是命题公式,

  • 如果对于 A 1 ∧ A 2 ∧ . . . A n ⊨ B A_1\wedge A_2 \wedge ...A_n \models B A1A2...AnB A 1 ∧ A 2 ∧ . . . A n A_1\wedge A_2 \wedge ...A_n A1A2...An 为假,那么 A 1 ∧ A 2 ∧ . . . A n ⊨ B A_1\wedge A_2 \wedge ...A_n \models B A1A2...AnB 这个推理是有效的;
  • 或者 A 1 ∧ A 2 ∧ . . . A n A_1\wedge A_2 \wedge ...A_n A1A2...An 为真时, B B B 也为真,那么称这个推理是有效的。
  • 总结就是:前件假的时候,无论如何推理都是有效的,前件真的时候,后件也要为真,推理才有效
  • 如果证明 A 1 ∧ A 2 ∧ . . . A n ⊨ B A_1\wedge A_2 \wedge ...A_n \models B A1A2...AnB 是有效的,那么我们称 B B B有效的结论

无效论证

  • 若前提都是真命题,而结论是假命题(前真推后假,那么是无效论证)。
  • A 1 ∧ A 2 ∧ . . . A n ⊨ B A_1\wedge A_2 \wedge ...A_n \models B A1A2...AnB A 1 ∧ A 2 ∧ . . . A n A_1\wedge A_2 \wedge ...A_n A1A2...An 为真,但是 B B B 是假。

一定要注意论证(推理) 的有效性 (Valid) 和 真(True) 的区别

Example

  • 有效论证不一定 产生真实的结论,比如如果 前件假(false) 的,那么这个推论(论证)一定是有效的(valid);但是可能是 前 假 ⊨ 后 假 前假 \models 后假 ,得到的结论还是个假的,但推理确实有效的。
  • 有效论证中可能包含假的前提,而无效的论证中却可能包含真的前提;例如 前 真 ⊨ 后 假 前真 \models 后假 这个推理就是无效的,但是前提是真的。
  • 如果前提全是真的,那么有效结论也一定是真的。因为这就是 前 真 ⊨ 后 真 前真 \models 后真 才能使得推理是有效的,因为 前 真 ⊨ 后 假 前真 \models 后假 这个推理是无效的。

有效论证的 4 种判断方法

判断的方法分为两大类:

  • 采用不同方法来证明 推理对应的单条件蕴含式是个永真(重言式)式
    • 真值表法
    • 等值演算法
    • 主析取范式法
  • 采用逻辑推演法证明:( 前 真 ⊨ 后 真 前真\models 后真 或者 前 假 ⊨ 后 真 前假\models 后真 或者 前 假 ⊨ 后 假 前假\models 后假 或者 后 假 ⊨ 前 假 后假 \models 前假
    在这里插入图片描述

例题:

判断下列推理是否正确:

  • 若 a 能被 4 整除,则 a 能被 2 整除。 a 能被 4 整除,所以 a 能被 2 整除

    • 构造推理公式:
      • p p p: a 能被 4 整除;
      • q q q:a 能被 2 整除;
      • p → q p\rightarrow q pq:若 a 能被 4 整除,则 a 能被 2 整除
      • ( p → q ) ∧ p ⊨ q (p\rightarrow q) \wedge p \models q (pq)pq:若 a 能被 4 整除,则 a 能被 2 整除。 a 能被 4 整除,所以 a 能被 2 整除
    • 逻辑推演法:
      • 采用 前真 ⊨ \models 后真 的思路
      • p ≡ T p\equiv T pT, p → q ≡ T p\rightarrow q \equiv T pqT 所以 q ≡ T q \equiv T qT 所以推理是正确的。(就是假言推理形式)
  • 下午马芳去游泳或去看电影,他没去看电影。所以他去游泳了

    • 构造推理公式:
      • p p p: 下午马芳去看电影;
      • q q q:下午马芳去游泳;
      • p ⊕ q p\oplus q pq:下午马芳去游泳或去看电影 ≡ ( ¬ p ∧ q ) ∨ ( p ∧ ¬ q ) \equiv(¬ p \wedge q)\vee(p\wedge ¬ q) (¬pq)(p¬q)
      • ¬ p ¬ p ¬p:马芳下午没去看电影
      • ( ¬ p ∧ q ) ∨ ( p ∧ ¬ q ) ∧ ¬ p ⊨ q (¬ p \wedge q)\vee(p\wedge ¬ q) \wedge ¬ p \models q (¬pq)(p¬q)¬pq :下午马芳去游泳或去看电影,他没去看电影。所以他去游泳了
    • 逻辑推演法:
      • 采用 前真 ⊨ \models 后真 的思路
      • ( ¬ p ≡ T ) ≡ ( p ≡ F ) (¬ p\equiv T) \equiv (p \equiv F) (¬pT)(pF),
      • p ∧ ¬ q ≡ F p\wedge ¬ q \equiv F p¬qF 所以 ( ¬ p ∧ q ) ≡ T (¬ p \wedge q) \equiv T (¬pq)T 所以 q ≡ T q \equiv T qT 所以符合前真推后真。
  • 12
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值