蕴涵式(implication)

蕴涵式implication)是命题逻辑中的一种基本逻辑运算,通常写作 P ⇒ Q ,读作“如果 P ,那么 Q”。

  • P 被称为前件(antecedent)或假设;
  • Q 被称为后件(consequent)或结论。

蕴涵的含义:

P ⇒ Q 的意思是:如果P 为真,那么 Q 必须为真。也就是说,在前提 P为真的情况下,结论Q 不能为假。否则,整个蕴涵式为假。

真值表:

蕴涵式 P ⇒ Q 的真值依赖于 ( P ) 和 ( Q ) 的真值组合。具体真值表如下:

( P )( Q )( P ⇒ Q )
真 (T)真 (T)真 (T)
真 (T)假 (F)假 (F)
假 (F)真 (T)真 (T)
假 (F)假 (F)真 (T)

解释:

  • 当 P 为真,且 Q 也为真时,蕴涵式 P ⇒ Q为真。
  • 当P为真,但 Q 为假时,蕴涵式 P ⇒ Q为假(因为前提成立时,结论不成立,违反了“如果…那么…”的逻辑)。
  • 当 P 为假时,无论Q 是真还是假,蕴涵式都为真。这是因为在逻辑上,如果前提不成立,整个蕴涵就自动成立。这种情况也被称为“虚假蕴涵”。

示例:

  1. 如果今天下雨( P ),那么我会带伞( Q )

    • 如果今天下雨,且我带了伞,蕴涵式为真。
    • 如果今天下雨,但我没带伞,蕴涵式为假。
    • 如果今天没下雨,无论我是否带伞,蕴涵式都为真(因为下雨的前提不存在,蕴涵自动成立)。
  2. P ⇒ P (自我蕴涵):任何命题 P都能够推导出自身。这是一个永真式,即总为真。

蕴涵式的总结:

  • 蕴涵式是表达条件关系的逻辑运算符,只有当前提为真而结论为假时,蕴涵式才为假。
  • 如果前提为假,则不管结论如何,蕴涵式总为真。这也是为什么我们说“假设可以推出任何东西”的原因。

practise

Prove via truth-tables whether the following formulae are valid (tautologies) or not:
i. (P ∧ ¬P ) ⇒ (¬Q ∨ Q)
ii. ((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R)
iii. (P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q)

i. (P ∧ ¬P ) ⇒ (¬Q ∨ Q)

True table
PQ¬PP∧¬P¬Q¬Q ∨ Q(P ∧ ¬P ) ⇒ (¬Q ∨ Q)
TTFFFTT
TFFFTTT
FTTFFTT
FFTFTTT

Since P∧¬P is always false, the implication(P∧¬P)⇒(¬Q∨Q) is always true because an implication with a false antecedent is always true.

ii. ((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R)

True table
PQRP∧Q(P ∧ Q) ⇒ RP ∨ Q(P ∨ Q) ⇒ R((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R)
TTTTTTTT
TTFTFTFT
TFTFTTTT
TFFFTTFT
FTTFTTTT
FTFFTTFT
FFTFTFTT
FFFFTFTT

In all rows, the formula ((P∧Q)⇒R)⇒((P∨Q)⇒R) evaluates to true.
Therefore, this formula is a tautology.

iii. (P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q)

True table
PQRQ ⇒ RP ∧ (Q ⇒ R)¬QQ ∨ ¬Q(P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q)
TTTTTFTT
TTFFFFTT
TFTTTTTT
TFFTTTTT
FTTTFFTT
FTFFFFTT
FFTTFTTT
FFFTFTTT

Q∨¬Q is always true, so the entire formula (P∧(Q⇒R))∨(Q∨¬Q) is always true.
Therefore, this formula is a tautology.

Conclusion:

i. (P∧¬P)⇒(¬Q∨Q) is a tautology.
ii. ((P∧Q)⇒R)⇒((P∨Q)⇒R) is a tautology.
iii. (P∧(Q⇒R))∨(Q∨¬Q) is a tautology.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值