蕴涵式(implication)是命题逻辑中的一种基本逻辑运算,通常写作 P ⇒ Q ,读作“如果 P ,那么 Q”。
- P 被称为前件(antecedent)或假设;
- Q 被称为后件(consequent)或结论。
蕴涵的含义:
P ⇒ Q 的意思是:如果P 为真,那么 Q 必须为真。也就是说,在前提 P为真的情况下,结论Q 不能为假。否则,整个蕴涵式为假。
真值表:
蕴涵式 P ⇒ Q 的真值依赖于 ( P ) 和 ( Q ) 的真值组合。具体真值表如下:
( P ) | ( Q ) | ( P ⇒ Q ) |
---|---|---|
真 (T) | 真 (T) | 真 (T) |
真 (T) | 假 (F) | 假 (F) |
假 (F) | 真 (T) | 真 (T) |
假 (F) | 假 (F) | 真 (T) |
解释:
- 当 P 为真,且 Q 也为真时,蕴涵式 P ⇒ Q为真。
- 当P为真,但 Q 为假时,蕴涵式 P ⇒ Q为假(因为前提成立时,结论不成立,违反了“如果…那么…”的逻辑)。
- 当 P 为假时,无论Q 是真还是假,蕴涵式都为真。这是因为在逻辑上,如果前提不成立,整个蕴涵就自动成立。这种情况也被称为“虚假蕴涵”。
示例:
-
如果今天下雨( P ),那么我会带伞( Q ):
- 如果今天下雨,且我带了伞,蕴涵式为真。
- 如果今天下雨,但我没带伞,蕴涵式为假。
- 如果今天没下雨,无论我是否带伞,蕴涵式都为真(因为下雨的前提不存在,蕴涵自动成立)。
-
P ⇒ P (自我蕴涵):任何命题 P都能够推导出自身。这是一个永真式,即总为真。
蕴涵式的总结:
- 蕴涵式是表达条件关系的逻辑运算符,只有当前提为真而结论为假时,蕴涵式才为假。
- 如果前提为假,则不管结论如何,蕴涵式总为真。这也是为什么我们说“假设可以推出任何东西”的原因。
practise
Prove via truth-tables whether the following formulae are valid (tautologies) or not:
i. (P ∧ ¬P ) ⇒ (¬Q ∨ Q)
ii. ((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R)
iii. (P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q)
i. (P ∧ ¬P ) ⇒ (¬Q ∨ Q)
True table
P | Q | ¬P | P∧¬P | ¬Q | ¬Q ∨ Q | (P ∧ ¬P ) ⇒ (¬Q ∨ Q) |
---|---|---|---|---|---|---|
T | T | F | F | F | T | T |
T | F | F | F | T | T | T |
F | T | T | F | F | T | T |
F | F | T | F | T | T | T |
Since P∧¬P is always false, the implication(P∧¬P)⇒(¬Q∨Q) is always true because an implication with a false antecedent is always true.
ii. ((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R)
True table
P | Q | R | P∧Q | (P ∧ Q) ⇒ R | P ∨ Q | (P ∨ Q) ⇒ R | ((P ∧ Q) ⇒ R) ⇒ ((P ∨ Q) ⇒ R) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | T | T | T |
T | T | F | T | F | T | F | T |
T | F | T | F | T | T | T | T |
T | F | F | F | T | T | F | T |
F | T | T | F | T | T | T | T |
F | T | F | F | T | T | F | T |
F | F | T | F | T | F | T | T |
F | F | F | F | T | F | T | T |
In all rows, the formula ((P∧Q)⇒R)⇒((P∨Q)⇒R) evaluates to true.
Therefore, this formula is a tautology.
iii. (P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q)
True table
P | Q | R | Q ⇒ R | P ∧ (Q ⇒ R) | ¬Q | Q ∨ ¬Q | (P ∧ (Q ⇒ R)) ∨ (Q ∨ ¬Q) |
---|---|---|---|---|---|---|---|
T | T | T | T | T | F | T | T |
T | T | F | F | F | F | T | T |
T | F | T | T | T | T | T | T |
T | F | F | T | T | T | T | T |
F | T | T | T | F | F | T | T |
F | T | F | F | F | F | T | T |
F | F | T | T | F | T | T | T |
F | F | F | T | F | T | T | T |
Q∨¬Q is always true, so the entire formula (P∧(Q⇒R))∨(Q∨¬Q) is always true.
Therefore, this formula is a tautology.
Conclusion:
i. (P∧¬P)⇒(¬Q∨Q) is a tautology.
ii. ((P∧Q)⇒R)⇒((P∨Q)⇒R) is a tautology.
iii. (P∧(Q⇒R))∨(Q∨¬Q) is a tautology.