离散数学知识点总结(7):谓词逻辑(一阶逻辑):个体词、谓词、量词、特性谓词;特性谓词的常用场景

本文介绍了为什么要使用一阶逻辑,它拓展了命题逻辑的表达能力。一阶逻辑中的关键概念包括量词、个体词和谓词。个体词代表客体,谓词表示性质或关系。个体词与谓词通过不同方式结合,形成谓词表达。量词分为全称量词和存在量词,用于限定谓词对个体的适用范围。特性谓词用来限制个体域,使得表达更为精确。文章通过实例展示了如何使用一阶逻辑符号化各种陈述。
摘要由CSDN通过智能技术生成

为什么使用一阶逻辑

  • 命题逻辑不能完全表达人们想要表达的内容

一阶逻辑的“新”概念

  • 量词
  • 个体词
  • 谓词

个体词

  • 可以独立存在的客体:
    • 具体或特定的个体词:个体常项 a , b , c , d , . . . a,b,c,d,... a,b,c,d,... 表示
    • 泛指的个体词:个体变项 x , y , z , . . . x,y,z,... x,y,z,... 表示
    • 个体变项的取值范围:个体域(论域) { 1 , 2 , 3 , a , b , c } \{1,2,3,a,b,c\} {1,2,3,a,b,c} 可以是有限集合也可以是无限的集合

谓词

  • 表示性质或者关系的词叫谓词
    • 表示具体性质或者具体关系的叫 谓词常项 F , G , H , . . . F,G,H,... F,G,H,...
    • 表示抽象或者泛指关系的谓词叫谓词变项,也用 F , G , H , . . . F,G,H,... F,G,H,... 表示

个体词和谓词的关系

  • 个体变项 x x x 具有性质 F F F ,记作 F ( x ) F(x) F(x)
  • 个体变项 x , y x, y x,y 具有关系 L L L ,记作 L ( x , y ) L(x,y) L(x,y)
  • F ( x ) , L ( x , y ) F(x), L(x,y) F(x),L(x,y) 这种联合体,也叫做谓词

个体词和谓词的简单例子

  • a a a 代表 2 \sqrt2 2 b b b 代表 小 李 小李 c c c 代表 小 赵 小赵
  • F ( x ) F(x) F(x) 代表“x是无理数”; L ( x , y ) L(x,y) L(x,y) 代表 x x x y y y 是好朋友
  • F ( a ) F(a) F(a) 代表 2 \sqrt2 2 是无理数; L ( b , c ) L(b,c) L(b,c) 代表 小赵和小李是好朋友

n元谓词,0元谓词

  • 包含个体词数量为 n ( n > = 1 ) n(n>=1) n(n>=1) 叫 n 元谓词
    • 1元谓词表示一个个体词的性质
    • 2元及以上元谓词表示多个个体词之间的关系
    • 不带 个体变项的谓词叫 0元谓词

谓词?命题?

  • 谓词要想称为命题,就要把所有不确定的东西变成确定的。
  • 首先,如果 F ( x , y ) F(x,y) F(x,y) F ( ) F() F() 是个谓词变项,那么不可以
  • 如果 F ( ) F() F() 是个谓词常项,依然不可以;还要求, x , y x,y x,y 都是常元;这个时候 F ( x , y ) F(x,y) F(x,y) 就变成命题了
  • 这个时候 F ( x , y ) F(x,y) F(x,y) 同时也是个 0元谓词了;也就是说,简单命题都是 0元谓词
  • 这样的话,命题就变成 谓词 的一种特殊形式了。也就扩大了我们能表示的逻辑概念。

简单的符号化

如果 2 大于 3 那么 2 大于 4

  • a : 2 a:2 a:2
  • F ( x , y ) : x > y F(x,y): x>y F(x,y):x>y
  • F ( 2 , 3 ) → F ( 2 , 4 ) F(2,3) → F(2,4) F(2,3)F(2,4)

量词

  • 全称量词:表示对所有个体域中的个体都适用某一条规则
    • ∀ \forall
    • ∀ x F ( x ) \forall xF(x) xF(x) 表示对所有个体域中的所有个体都有 F ( x ) F(x) F(x)性质,或者都符合 F ( x ) F(x) F(x) 规则
  • 存在量词: 至少有一个个体适用某条规则
    • ∃ x F ( x ) \exists xF(x) xF(x)
  • 多个量词同时出现的时候,不能随意颠倒他们的顺序。

特性谓词

  • 特性谓词是用来限制个体域的;如果没有特别限制的话, 个体域是全总个体域。
  • 引入特性谓词之后,使用全称量词和使用存在量词符号化的形式是不同的
  • 这么说太抽象了,我们用下面的例子来表示一下:

例子:
所有的自然数都是整数。

  • 第一种情况,我们让自然数 N 称为这句话的个体域。也就是说,当我们用 ∀ x \forall x x 的时候,我们就已经代表了 “对所有的自然数 x x x”。然后我们用 I ( x ) I(x) I(x) 表示 x x x 是整数这个性质。所以在这种情况下(没有使用特性谓词)这句话将被公式化为: ∀ x ( I ( x ) ) \forall x(I(x)) x(I(x))
  • 第二情况,我们不指定个体域;也就是说当我们用 ∀ x \forall x x 表示的时候,表示的是,对于全总个体域中所有的 x x x 。同样用 I ( x ) I(x) I(x) 表示 x x x 是整数;这种情况下我们要表示 “所有的自然数都是整数” 我们就要找一个 特性谓词 来限制 x x x 的性质。此时我们用 N ( x ) N(x) N(x) 表示 x x x 是自然数。所以以上的话我们可以公式化为: ∀ x ( N ( x ) → I ( x ) ) \forall x(N(x)→I(x)) x(N(x)I(x));这句话可以翻译为:对于全总个体域中的所有个体,如果他是个自然数,那么他就是个整数

总结一下,特性谓词的出现,可以把一句话换个说法但是结果同样的正确。在上面的例子里面,我们就把原话“所有的自然数都是整数” 转变成了 “在全总个体域中,如果一个数是自然数,那么这个数就是整数”

例子2:
所有的人都会有一个生母

  • 当我们指定个体域是 “人” ,这句话可以符号化为 ∀ x ∃ y M ( x , y ) \forall x \exist y M(x,y) xyM(x,y) M ( x , y ) M(x,y) M(x,y) 表示 y y y x x x 的生母
  • 不指定个体域, M ( x , y ) M(x,y) M(x,y) 同样表示 y y y x x x 的生母,这句话应该写成 ∀ x ( R ( x ) → ∃ y ( R ( y ) ∧ M ( x , y ) ) \forall x(R(x) \rightarrow \exist y(R(y) \wedge M(x,y)) x(R(x)y(R(y)M(x,y)), R ( x ) R(x) R(x) 表示 x x x 是人。 这句话的意思是:如果 x x x 是人,那么一定能找到一个 y y y y y y 是人,并且 y y y x x x 的生母

特性谓词在全称量词中通常作为 “前件”

  • 比如第一个例子中的 N ( x ) N(x) N(x)
    在这里插入图片描述

特性谓词在存在量词中通常表示为 “合取” 的关系

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值