Python面试必考点:浅拷贝与深拷贝

在搞清楚浅拷贝与深拷贝之前,需要知道以下基础知识,这是极为重要的。

  1. 在Python中,一切皆对象。它的这种面向对象相对于其他语言是更彻底的。平时所使用的的int,str,tuple,list,dict, set这些可都是对象!!!所以别再傻傻地以为int()是在调用一个方法,这实际上是在实例化一个对象。当然了还有函数名、模块等,就连TrueFalse全都是对象。所以类似数字1、字符长"hello"这些都是实例化后的实例对象

  2. Python的变量名仅仅是“标签” ,它的作用就是指向实际的内存地址
    s = 'hello' 是先在内存中开辟了一个空间,存放着'hello',然后s指向了这个内存地址,学过Java的应该知道,这一点与Java很像。

在Python中,内置的标准数据类型又分为可变对象与不可变对象。
其中intstrtuple不可变对象其中的元素是不可被修改的
好,话不多说,用代码来说明一切:

>>> a = 1
>>> b = 1
>>> a is b  # is 用于判断内存地址是否相等
True

等等!这结果与预料的不对吧?按照上述所说的整数也是个对象,a 和 b 这两个标签应该指向的应该是不同的实例对象啊,怎么内存地址反倒是相等的??(说明是同一个对象)

那是因为Python有一个intern机制:它会将之前实例化过的小整数对象存放在intern池中,如果后面再需要同样的小整数,Python也就不会再实例化了,而是直接指向原先生成好的数字。
Python这么做也是为了节约内存空间。因为在我们平时写代码的过程中,索引、遍历什么的都要用到小整数,总不能每次都实例出个整数对象吧?
而大整数Python就会生成两个不同的对象了,在此就不再演示。

同理:string也是一样:

>>> a = "hello"
>>> b = "hello"
>>> a is b
True
>>>

Python会将已将实例化过的string缓存起来,值相等的话便不再生成新的对象。
floattuple呢??

>>> a = 1.2
>>> b = 1.2
>>> a is b
False
>>> a = (1, 2)
>>> b = (1, 2)
>>> a is b
False

发现这时真正的实例出了对象。这又是为什么?
对于float对象。这种带有小数点的可有太多了,Python可不会帮你缓存
而对于tuple,Python要判断两个tuple相等时是要O(n)的复杂度,与其这样,不如不加缓存。

那对于可变对象setlistdict呢?

>>> a = []
>>> b = []
>>> a is b
False
>>> a = {}
>>> b = {}
>>> a is b
False
>>>

显而易见,这些不可变对象都是不同的实例对象

以上都清楚明白之后,再来说浅拷贝与深拷贝:无论是浅拷贝还是深拷贝,对于不可变类型是不会生成实例的!!指向的还是同一个对象,看如下代码:

>>> from copy import copy, deepcopy
>>> a = "test"
>>> b = copy(a)
>>> c = deepcopy(a)
>>> a is b
True
>>> a is c
True
>>> a = (1, 2, 3)
>>> b = copy(a)
>>> c = deepcopy(a)
>>> a is b
True
>>> a is c
True

这里要特别注意元组的拷贝:虽然元组没有intern机制,但对于浅拷贝来讲一样不会产生新实例。
而对于可变对象,无论是浅拷贝还是深拷贝,都会生成不同的实例对象

>>> a = []
>>> b = copy(a)
>>> c = deepcopy(a)
>>> a is b
False
>>> a is c
False
>>> a = {}
>>> b = copy(a)
>>> c = deepcopy(a)
>>> a is b
False
>>> a is c
False

那既然都一样,浅拷贝和深拷贝还有啥区别??
它们的区别在于:浅拷贝仅仅拷贝最外的一层,而深拷贝则会递归地拷贝对象。最明显的就是可变对象中嵌套可变对象:如列表嵌套列表。

>>> l1 = [1, 2]
>>> l2 = [3, 4]
>>> a = [l1, l2]
>>> b = copy(a)
>>> c = deepcopy(a)
>>> l1 is b[0]
True
>>> l1 is c[0]
False

所以可以知道:当l1l2中的元素发生变化时,列表ab会随之改变,因为它们中存放的元素就是l1l2。而深拷贝不会随之改变,因为列表c中的元素是一个全新的实例对象,与l1l2无关。
来接着看代码:

>>> l1[0] = 2   
>>> a           
[[2, 2], [3, 4]]
>>> b           
[[2, 2], [3, 4]]
>>> c           
[[1, 2], [3, 4]]

那对于可变对象中存放着不可变对象呢?浅拷贝也会跟着改变吗?

>>> a = ["hello", (1, 2, 3), 123]
>>> b = copy(a)
>>> a[0] = "haha"
>>> a[1] = (1, 2)
>>> a
['haha', (1, 2), 123]
>>> b
['hello', (1, 2, 3), 123]

修改不可变类型时实际上是生成新对象,与之前的对象毫无关系了,所以是不会随之改变的
所以得出结论: 只有在可变对象中嵌套可变对象时,浅拷贝与深拷贝才会有区别。
而平时用到的列表切片、自带的copy()方法等也都是浅拷贝

>>> a = [[1, 2], [3, 4]]
>>> b = a[:]
>>> a[0][0] = 2
>>> a
[[2, 2], [3, 4]]
>>> b
[[2, 2], [3, 4]]

再来看字典的copy()方法:

>>> d = dict(a=[1, 2], b=[3, 4])
>>> e = d.copy()
>>>> d['a'][0] = 2
>>> d
{'a': [2, 2], 'b': [3, 4]}
>>> e
{'a': [2, 2], 'b': [3, 4]}

接下来就看看平时写代码过程中经常会犯的错误:

def f():
    item = {}
    for i in range(10):
        item['a'] = i
        res.append(item)  

if __name__ == '__main__':  
    res = []
    f()
    print(res)

运行结果:

[{'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}, {'a': 9}]

这样的结果大多数人应该都遇到过:就是列表中的元素都是相同的!!
现在看来就非常好理解,问题是出现在了res.append(item),因为自始至终程序修改的都是同一个对象,而这个对象又反复地往列表中添加,自然就会得到最后一次修改后的结果。
那该如何解决呢?那就添加一个全新的对象呗,修改为res.append(item.copy())

这样就能如愿地得到了想要的结果:

[{'a': 0}, {'a': 1}, {'a': 2}, {'a': 3}, {'a': 4}, {'a': 5}, {'a': 6}, {'a': 7}, {'a': 8}, {'a': 9}]

本文到此告一段落了,希望看完后的你有所收获。
over!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值