1、两个二维向量叉积: 表示两个向量构成的平行四边形面积。(a,b为矢量)
a x b = |a|·|b|·sin(theta)
2、两个三维向量叉积: (向量尾部相接)根据右手定则,将一个向量旋转到另一个向量,大拇指方向就是叉积出来的旋转向量的方向;同时也表示两个向量尾部相接构成的平行四边形的有向面积(叉积出来的旋转向量的模长)。
计算: a x b = [a2b3-a3b2, a3b1-a1b3, a1b2-a2b1] = a^ · b
(其中,中间部分是一个3x1列向量,a^表示a的反对称矩阵)
内积:两个向量之间的投影;即,a·b = |a|·|b|·cos(theta)
3、带固定杆臂的两坐标系的线速度、角速度求解:
角速度的方向:垂直于转动平面(右手定则),线速度等于角速度叉乘半径,半径由圆心指向圆外。
坐标系a 原点的线速度等于坐标系b原点的线速度加上一个由于连杆的角速度引起的新的分量,再乘以转换矩阵。
假设Tab为a坐标系到b坐标系的坐标系变换矩阵,Rab为旋转矩阵,tab为平移向量,b坐标系的线速度Vb、角速度 Wb,则
角速度: Wa = Rab * Wb;
线速度: Va = Rab * (Vb +(Wb x tba) );
参考: https://www.guyuehome.com/19879