叉积的应用

1、两个二维向量叉积:  表示两个向量构成的平行四边形面积。(a,b为矢量)

        a x b = |a|·|b|·sin(theta)

2、两个三维向量叉积:  (向量尾部相接)根据右手定则,将一个向量旋转到另一个向量,大拇指方向就是叉积出来的旋转向量的方向;同时也表示两个向量尾部相接构成的平行四边形的有向面积(叉积出来的旋转向量的模长)。

计算: a x b = [a2b3-a3b2,  a3b1-a1b3,  a1b2-a2b1] = a^ · b

(其中,中间部分是一个3x1列向量,a^表示a的反对称矩阵)

        内积:两个向量之间的投影;即,a·b = |a|·|b|·cos(theta)

3、带固定杆臂的两坐标系的线速度、角速度求解: 

角速度的方向:垂直于转动平面(右手定则),线速度等于角速度叉乘半径,半径由圆心指向圆外。

坐标系a 原点的线速度等于坐标系b原点的线速度加上一个由于连杆的角速度引起的新的分量,再乘以转换矩阵。

假设Tab为a坐标系到b坐标系的坐标系变换矩阵,Rab为旋转矩阵,tab为平移向量,b坐标系的线速度Vb、角速度 Wb,则

        角速度:  Wa = Rab * Wb;

        线速度:  Va = Rab * (Vb +(Wb x tba) );

参考: https://www.guyuehome.com/19879

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值