1218:取石子游戏
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 4462 通过数: 2049
【题目描述】
有两堆石子,两个人轮流去取。每次取的时候,只能从较多的那堆石子里取,并且取的数目必须是较少的那堆石子数目的整数倍,最后谁能够把一堆石子取空谁就算赢。
比如初始的时候两堆石子的数目是25和7。
25 7 --> 11 7 --> 4 7 --> 4 3 --> 1 3 --> 1 0
选手1取 选手2取 选手1取 选手2取 选手1取
最后选手1(先取的)获胜,在取的过程中选手2都只有唯一的一种取法。
给定初始时石子的数目,如果两个人都采取最优策略,请问先手能否获胜。
【输入】
输入包含多数数据。每组数据一行,包含两个正整数a和b,表示初始时石子的数目。
输入以两个0表示结束。
【输出】
如果先手胜,输出"win",否则输出"lose"
# include<iostream>
using namespace std;
int n,m;
void swap(int &a,int &b)
{
int t=b;
b=a;
a=t;
}
void solve(int a,int b,int step)
{
if(a<b) //比较a,b大小
swap(a,b);
if(a/b>=2)
{
if(step%2!=0) //看取的次数step是不是偶数,若是奇数,则先手win,否则lose
cout<<"win"<<endl;
else cout<<"lose"<<endl;
return ;
} //如果 a/b<2 ,则从大数中取小数然后递归,取的次数+1
else
{
solve(a-b,b,step+1);
}
}
int main()
{
while(cin>>n>>m&&n&&m)
{
solve(n,m,1);
}
return 0;
}