NGSIM数据集相关解释

这篇博客详细介绍了交通数据分析中的关键指标,包括车辆识别号、时间戳、坐标、速度和加速度等。数据集涵盖了高速公路和城市道路的多个场景,如US101和I-80,用于研究车辆行驶轨迹、车道变化、速度和加速度等行为。此外,还讨论了车辆的起始和目标区域以及路口和路段信息,为交通管理和智能交通系统提供有价值的数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

列名描述
Vehicle_Id车辆识别号(根据进入该区域的时间升序),重复利用
Frame_Id该条数据在某一时刻的帧(按开始时间升序),同一Vehicle_ID的帧号不会重复
Total_Frame该车出现在此数据集的总帧数
Global_Time时间戳(ms)
Local_X车辆前部中心的横向(X)坐标,以英尺为单位,相对于截面在行驶方向上的最左侧边缘。
Local_Y车辆前部中心的纵向(Y)坐标,以英尺为单位,相对于截面在行驶方向上的进入边缘。
以上两个采集区域内的坐标,采集区域不同,坐标系不同,会有不同的零点
Global_X,Y全局坐标,只有一个零点,可用作数据筛选
v_length车辆长度(以英尺为单位)
v_Width车辆长度(以英尺为单位)
v_Class车辆类型:1-摩托车,2-汽车,3-卡车
v_Vel车辆瞬时速度,以英尺/秒为单位
v_Acc车辆的瞬时加速度,以英尺/秒为单位
Lane_ID车辆的当前车道位置。 第1车道是最左边的车道; 第5车道是最右边的车道。
O_Zone车辆的起点区域,即车辆进入跟踪系统的位置。 研究区域有11个起源,编号从101到111。有关更多详细信息,请参阅数据分析报告。
D_Zone车辆的目的地区域,即车辆离开跟踪系统的地方。 研究区域中有10个目的地,从201到211编号。起点102是单向出口; 因此,没有关联的目标号码202。请参阅数据分析报告以获取更多详细信息。
Int_ID车辆行驶的路口。 交叉点的编号为1到4,交叉点1位于最南端,交叉点4位于研究区域的最北端。 值为“ 0”表示该车辆不在交叉路口的附近,而是该车辆标识为Lankershim Boulevard的一段(下面的Section_ID)。 请参阅数据分析报告以获取更多详细信息。
Section_ID车辆行驶的路段。 Lankershim Blvd分为五个部分(路口1的南部;路口1和2、2和3、3和4之间;路口4的北部)。 值为“ 0”表示该车辆未识别出Lankershim Boulevard的一段,并且该车辆紧邻交叉路口(上述Int_ID)。 请参阅数据分析报告以获取更多详细信息
Direction车辆的行驶方向。 1-东行(EB),2-北行(NB),3-西行(WB),4-南行(SB)
Movement车辆的运动。 1-通过(THE),2-左转(LEFT),3-右转(RT)。
Preceding同道前车的车辆编号。数值为“0”表示没有前面的车辆-发生在研究段的末尾和出匝道
Following在同一车道上跟随本车辆的车辆的车辆ID。 值“ 0”表示没有跟随的车辆-在研究部分的开头和匝道发生,
Space_Headway间距提供了车辆的前中心到前一辆车辆的前中心之间的距离。(英尺)
Time_Headway时间进度(以秒为单位)提供了从车辆的前中心(以车辆的速度)行进到前一辆车辆的前中心的时间。
Location街道名称或高速公路名称

NGSIM包含四个不同场景下的数据集,分别为:US101,I-80,Lankershim Boulevard 和 Peachtree Street。前两个数据集记录了车辆在高速公路上的行驶轨迹,后两个数据集记录了车辆在城市道路上的行驶轨迹。
US101:高速公路,摄像头视野覆盖的路段长度为640m,其中有5条高速公路车道。
I-80:高速公路,路段长度500m,包含六条高速公路车道(其中一条为高承载车道)和一条汇入的斜坡弯道。

### 关于NGSIM数据集的详细介绍 #### 数据集概述 NGSIM(Next Generation Simulation)是由美国联邦公路管理局(FHWA)开发的一组车辆轨迹数据集,旨在支持交通流理论研究以及高级驾驶辅助系统的开发。这些数据通过视频检测技术获取,记录了真实道路上车辆的运动细节[^1]。 #### 下载链接 官方提供的下载页面位于以下网址: [https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories](https://catalog.data.gov/dataset/next-generation-simulation-ngsim-vehicle-trajectories) #### 使用说明 为了有效利用NGSIM数据集,需注意以下几个方面: - **文件格式**:数据通常以CSV格式存储,每条记录代表一辆车在一个时间步内的位置、速度和其他属性。 - **主要字段解释**: - `Vehicle_ID`:唯一标识每一辆车。 - `Frame_ID`:帧编号,用于区分不同时间段的数据采集。 - `Global_X/Y`:车辆在全球坐标系下的位置。 - `Local_X/Y`:车辆在局部坐标系下的位置。 - `v_length/v_width`:车辆长度和宽度。 - `v_class`:车辆类别(如轿车、卡车等)。 以上字段定义有助于理解数据结构并进行后续分析。 #### 轨迹提取工具 对于自动驾驶领域中的特定需求,例如车道变换行为的研究,可以参考开源项目LC_NGSIM。该项目从原始NGSIM数据集中提取了车道变换相关的轨迹,并提供了预处理后的数据集供研究人员使用。其GitHub镜像地址如下: [https://gitcode.com/gh_mirrors/lc/LC_NGSIM](https://gitcode.com/gh_mirrors/lc/LC_NGSIM)[^2] #### 应用场景——交通仿真 NGSIM数据常被应用于交通仿真的输入源之一。例如,在TransModeler这样的现代交通仿真软件中,可以通过混合微观与中观仿真方法来优化大规模路网建模效率。具体而言,敏感区域采用高精度微观仿真,其余部分则切换至较低分辨率的中观模式,从而平衡计算资源消耗与结果准确性[^3]。 #### 基于强化学习的应用案例 除了传统仿真外,NGSIM数据还可作为强化学习算法的基础素材。比如有研究者尝试将DQN(Deep Q-Networks)引入智能交通信号灯控制领域,借助此类高质量的真实世界数据训练模型,提升城市交叉口通行能力和服务水平[^4]。 ```python import pandas as pd # 加载NGSIM数据示例代码 data_path = 'path_to_ngsim_data.csv' df = pd.read_csv(data_path) print(df.head()) ``` 上述脚本展示了如何加载NGSIM CSV文件的一个简单例子,便于初学者快速上手数据分析工作流程。 ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值