【算术】最长回文子串

题目描述

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。

示例 2:

输入:s = “cbbd”
输出:“bb”

示例 3:

输入:s = “a”
输出:“a”

示例 4:

输入:s = “ac”
输出:“a”

提示:

1 <= s.length <= 1000
s 仅由数字和英文字母(大写和/或小写)组成

解题思路(一):暴力解法

列举所有子串,空间O(1),双重遍历,还有一层判断是否是回文,时间O(n3),

// 暴力解法
   public String longestPalindrome(String s) {
        char[] chars = s.toCharArray();
        //长度小于等于1,直接返回
        if (s.length() <= 1) {
            return s;
        }
        int len = chars.length - 1;
        String result = "";
        tag:  //跳出多重循环的标签
        for (int i = 0; i < chars.length; i++) {
            for (int j = len; j > i; j--) {//逆序遍历,找到就跳出
                if(result.length()>len+1-i){//剩下长度小于已有回文字符串
                    break tag;//跳出全部循环
                }
                if (ifPalindrome(chars, i, j)) {
                    if (result.length() < j + 1-i) {//已有回文小于最新回文串长度
                        result = s.substring(i, j + 1);
                    }
                    break;//找到回文串,换下一个i值
                } 
            }
        }
        if (result.length() < 1) {
            result = String.valueOf(chars[0]);
        }
        return result;
    }

    public boolean ifPalindrome(char[] chs, int begin, int end) {
        if (begin == end) {
            return true;
        } else if (begin + 1 == end) {
            return chs[begin] == chs[end];
        } else if (chs[begin] == chs[end]) {
            return ifPalindrome(chs, begin + 1, end - 1);
        }
        return false;

    }

解题思路(二):倒置,然后找最长公共子串

时间复杂度 O(n²)。
空间复杂度降为 O(n)O(n)。

public String longestPalindrome(String s) {
    if (s.equals(""))
        return "";
    String origin = s;
    String reverse = new StringBuffer(s).reverse().toString();
    int length = s.length();
    int[] arr = new int[length];
    int maxLen = 0;
    int maxEnd = 0;
    for (int i = 0; i < length; i++)
        for (int j = length - 1; j >= 0; j--) {
            if (origin.charAt(i) == reverse.charAt(j)) {
                if (i == 0 || j == 0) {
                    arr[j] = 1;
                } else {
                    arr[j] = arr[j - 1] + 1;
                }
            } else {
                arr[j] = 0;
            }
            if (arr[j] > maxLen) {
                int beforeRev = length - 1 - j;
                if (beforeRev + arr[j] - 1 == i) {
                    maxLen = arr[j];
                    maxEnd = i;
                }

            }
        }
    return s.substring(maxEnd - maxLen + 1, maxEnd + 1);
}

解题思路(三):扩展中心(待续)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值