怪盗基德的挑战书 (kmp+dp)

 

在树最美丽的那天,当时间老人再次把大钟平均分开时,我会降临在灯火之城的金字塔前,带走那最珍贵的笑容。”这是怪盗基德盗取巴黎卢浮宫的《蒙娜丽莎的微笑》这幅画时,挑战书上的内容。 
  但这次,怪盗基德的挑战书上出现了一串串小写字母“aaab sdfeeddd...”。柯南以小学生的眼睛,超凡高中生的头脑,快速统计各种字母频率,字符串长度,并结合挑战书出现的时间等信息,试图分析怪盗基德的意图。最后,他将线索锁定在字符串的循环次数上。并且进一步推理发现,从字符串的第一位开始,到第i位,形成该字符串的子串(c1, c2, c3 ... ci )。对于某一子串ci在该字符串中出现的次数记为ki,则全部子串的循环次数总和AIM = k1 + k2 + ... + ki + ... + kn,柯南发现,AIM恰好对应一个ASCII码!所以,只要把挑战书上的字符串转变成数字,再找到对应的ASCII码,就可以破解这份挑战书了! 
  现在,你的任务就是把字符串转变成对应数字,因为ASCII码以及扩展ASCII码全部只有256个,所以,本题只要把结果对256取余即可。

Input

输入有多组测试数据; 
每组测试数据只有一个字符串,由各种小写字母组成,中间无空格。 
字符串的长度为L(0 < L <= 100000)。

Output

请计算并输出字符串的AIM值,每组数据输出一行。

Sample Input

aaa
abab

Sample Output

6
6

题意:求以首字母开头的所有子串在原串中出现的次数之和。

思路1:暴力,用kmp进行字符串匹配,将原串分别与其子串匹配,求其匹配成功次数之和(超时)

思路2:kmp+dp

next数组中next[i]表示的是以下标为i的字符结尾的前缀中最长公共前后缀的长度,我们令dp[i]表示以下标为i的字符结尾的前缀中所含有以下标为i的字符结尾的前缀的个数,那么显然有dp[i]=dp[next[i]]+1(如果next[i]==-1,说明无相同前后缀,也就是说该串第一次出现,dp[i]=1),求出dp数组后累加即为答案

 

注释掉的代码为思路1(TLE)

#include<cstdio>
#include<cstring>
using namespace std;
const int mod=256;
const int N=1e5+5;
char s[N];
int next[N];
int dp[N];
void get_next(char s[],int len){
	int j=-1;
	next[0]=-1;
	for(int i=1;i<len;i++){
		while(j!=-1&&s[i]!=s[j+1])
		j=next[j];
		if(s[i]==s[j+1])
		j++;
		next[i]=j;
	}	
}
//int Kmp(char x[],char y[]){//x是模式串,y是主串 
//    int ans=0; 
//	int lx=strlen(x);
//	int ly=strlen(y);
//	get_next(x,lx);
//	int i=0;
//	int j=0;
//	while(i<ly){
//		while(j!=-1&&y[i]!=x[j]) j=next[j];
//		i++;
//		j++;
//		if(j>=lx){
//			ans++;
//			j=next[j];
//		}
//	}
//	return ans%mod;
//}
int main(){
	while(~scanf("%s",s)){
		int ans=0;
		int len=strlen(s);
		get_next(s,len);
//		for(int i=0;i<len;i++){
//			ans+=Kmp(s+i,s);
//			ans%=256;
//		}
        for(int i=0;i<len;i++){
        	if(next[i]!=-1)
        	dp[i]=dp[next[i]]+1;
        	else
        	dp[i]=1;
        	ans+=dp[i]%mod;
		}       
		printf("%d\n",ans%mod);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值