单层感知器应用实例——坐标点的分类

单层感知器应用实例——坐标点的分类问题

问题描述:给定二维平面的六个点,利用单层感知器进行分类


一、手算

给定六个点,如下图1-1所示:

在这里插入图片描述

序号 X Y 所属类型
1 -9 15 0
2 1 8 1
3 -12 4 0
4 -4 5 0
5 0 11 0
6 5 9 1

这是一个线性可分问题,输入的是2维向量,在2微空间中可用一条直线将两个大类正确地分开,需要达到打效果如下图:

在这里插入图片描述

由于输入的向量维数为2,输出的向量维数为1,因此,创建感知器网络只有一个输出节点,有两个输入节点,网络的结构图如下:
在这里插入图片描述

网络中需要求解的权值是 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2以及偏置b.

手算的步骤如下

  1. 定义向量
    ω = [ b , ω 1 , ω 2 ] T \omega=[b,\omega_1,\omega_2]^T ω=[b,ω1,ω2]T
    定义输入输入向量
    P = [ 1 ,

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
逻辑回归是一种用于解决二分类问题的机器学习算法,可以通过训练模型来预测新数据分类。 在单层感知器问题中,我们需要将坐标分为两类。假设我们有一组训练数据集 $(x_1, y_1), (x_2, y_2),..., (x_n, y_n)$,其中 $x_i$ 是一个二维坐标,$y_i$ 是该的标签,取值为 0 或 1。 逻辑回归的目标是找到一个函数 $f(x)$,将每个映射到一个概率值,用于预测该的标签。这个函数可以表示为: $$ f(x) = \frac{1}{1 + e^{-z}} $$ 其中,$z$ 表示函数的输入,可以写成: $$ z = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n $$ 其中 $w_0, w_1, w_2, ..., w_n$ 是模型的参数,需要通过训练来确定。 我们需要根据训练数据集来确定模型的参数。训练的过程就是要找到一组参数,使得函数 $f(x)$ 的输出与实际标签 $y$ 的差距最小。这个过程可以使用梯度下降算法来实现。 具体来说,我们需要定义一个损失函数,用于衡量预测值与实际标签之间的差距。逻辑回归使用的损失函数是交叉熵损失函数。假设我们有 $m$ 个训练样本,那么损失函数可以表示为: $$ J(w) = -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(f(x_i)) + (1-y_i) \log(1-f(x_i))] $$ 其中 $w$ 表示模型的参数,$f(x_i)$ 表示模型对第 $i$ 个样本的预测值。 我们需要通过梯度下降算法来最小化损失函数。具体来说,我们需要计算损失函数对参数 $w$ 的偏导数,并根据偏导数的方向更新参数。 偏导数的计算可以使用链式法则来实现。假设我们要计算 $\frac{\partial J}{\partial w_j}$,那么我们可以先计算 $\frac{\partial J}{\partial f}$ 和 $\frac{\partial f}{\partial z}$,然后再计算 $\frac{\partial z}{\partial w_j}$,最后将这些偏导数相乘即可。 具体来说,偏导数的计算公式如下: $$ \frac{\partial J}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i) x_{ij} $$ 其中 $x_{ij}$ 表示第 $i$ 个样本的第 $j$ 个特征。 最后,我们可以使用梯度下降算法来更新参数。假设学习率为 $\alpha$,那么更新公式如下: $$ w_j = w_j - \alpha \frac{\partial J}{\partial w_j} $$ 我们可以不断迭代上述过程,直到损失函数收敛或达到预定的迭代次数。最终得到的参数 $w$ 就可以用于预测新数据的标签。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值